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ABSTRACTS

Noncommutative algebraic dynamics:
Ergodic transformations of pro-2-groups

V. S. Anashin

Russian State University for the Humanities, Russia
vs-anashin@yandex.Tu

Let G = (G,Q) be a group G with a set of operators Q; let w(z) be a
polynomial over G; that is

niwi NpWe

now
gox % L grT

w(z) = g1z Ik

where n; € Z, w; € Q, g; € G. (Note: we represent the group operation in a
multiplicative form; that is, (uv)¥ = u“v¥, ™ = (u")¥ = (u¥)™ for u,v € G,
w € Q, and a rational integer n € Z).

Problem: under what conditions the transformation
a—w(a) (a€qG)

is ergodic?

The problem seems to be infeasible whenever the group G is non-solvable.
For a solvable group the problem could be handled.

A counterpart of the problem for finite commutative rings leads to the
ergodic theory on the space of p-adic integers Z,, the latter being a projective
limit of residue rings modulo p™, n = 1,2, .... In case G is a finite solvable group,
the problem stated above leads to the ergodic theory on a pro-2-group Do,
which is a non-Archimedean metric space, a projective limit of finite dihedral
groups of order 2™.

Comparing to the ergodic theory on Z,, which machinery is based on the
p-adic differential calculus, the techniques of the developed theory is based on a
modified version of the free differential calculus originally developed by R. Fox
to study some problems of knot theory.

The problem is motivated by some cryptographic issues; the resulting theory
may have applications to computer science and cryptography.



Consciousness, spacetime
and quantum mechanics of macroscopic systems

Mikhail Altaisky

JINR (Dubna) and Space Research Institute RAS (Moscow), Russia
altaisky@maz.iki.rssi.ru

We propose the quantum mechanical description of complex systems should
be performed using two types of causality relation: the ordering relation (z < y)
and the subset relation (A C B). The structures with two ordering operations,
called the causal sites, have been already proposed in context of quantum gravity
(Christensen and Crane, 2005). We suggest they are also common to biological
physics and may describe how the brain works. In the spirit of the Penrose ideas
we identify the geometry of the space-time with universal field of consciousness.
The latter has its evident counterparts in ancient Indian philosophy and provides
a framework for unification of physical and mental phenomena.

p-adic Cosmology
I. Aref’eva

Steklov Mathematical Institute, Moscow, Russia
arefeva@mi.ras.ru

A great discovery of the last few years is the discovery of the current accel-
erated expansion of the Universe. This acceleration seems to be explicable by
the presence of a new component of matter called dark energy. To explain the
dark energy and the Big Bang very exotic field models have been used in last
years. String theories provide some of these models. Also many attempts has
been made to building and testing stringy models of inflation.

p-Adic cosmology is related with p-adic strings. More realistic superstring
nonlocal cosmological models are deformations of the p-adic cosmological model.
In these models the Friedmann equations give a system of nonlinear nonlocal
equations. Recent results of study of these equations will be presented.



New results in the applications of p—adic pseudodifferential
equations to the protein dynamics

V. A. Avetisov!', A. Kh. Bikulov?, A. P. Zubarev?

L. N.N.Semenov Institute of Chemical Physics, Moscow, Russia, avetisov@chph.ras.ru
2: N.N.Semenov Institute of Chemical Physics, Moscow, Russia, aida@hovanka.ru
3: The State Academy of Railways, Samara, Russia, apzubarev@mail.ru

On the First International conference on p-adic mathematical physics, we
pointed out that the protein dynamics can be described by the p-adic pseudo-
differential equation of ultrametric diffusion. We showed an ultrametric model
for the ligand rebinding kinetics of myoglobine and demonstrated good agree-
ment with experimental data. Our new application of p-adic pseudo-differential
equations to the protein dynamics is related to the phenomenon of spectral
diffusion in globular proteins. Spectral diffusion is a peculiar random process
propagated on a ”frequency line”, which is observed by measurements of the
absorption frequency of a marker injected into the protein macromolecule. Two
distinguish feature are inherent in spectral diffusion: anomalously slow widen-
ing of the spectral diffusion kernel and aging effect. We present a model of
spectral diffusion in proteins based on ultrametric description of the protein
dynamics and exhibit excellent agreement with experimental data in this case
too. These results support an idea that proteins are macromolecular structures
with ultrametric order.

Stochastic processes in (),
associated with nonlinear PDEs

Ya. I. Belopolskaya

St. Petersburg state university for architecture
and civil engineering, Russia
yanabeus@yahoo.com

In the Eucledian case there exists a connection between a class of nonlinear
integro-differential equations and Markov processes with jumps similar to one
that there exists between nonlinear parabolic equations and diffusion processes
investigated by Dalecky and Belopolskaya. We study the similar connections
between integro-differential equations for scalar and vector valued functions de-
fined on @, and corresponding jump processes. At the same time we construct
the analogue of the Feynmann-Kac formula and study both scalar and matrix-
valued multiplicative functionals of jump @Q,-valued processes.

Let (Q,F, P) be a complete probability space. For a subset I' € K denote
by v4(t,T') a Poisson process with the parameter tm, (") va(t,T') is a random



non-negative countably additive measure on the Borel g-algebra B(Q,\0) such
that v4(¢,T'1) and v, (t,T'y) are independent if T'; N T2 = (. Below we assume
that Ev,(t,T') =t (T') where 7, is the Lévy measure

p*—1

mal(dz) = T ==

E1( a1z,
Consider a stochastic differential equation

dg(t) = o f(«f(t),u(t,«f(t)),z)ua(dt,dz), 5(3) =ze kK (1)

where f(z,u, z) is a K-valued deterministic function and 0 < s <t <T.

Condition C 1. For a fixed u(t,z) € R? we assume that f,(t,z,2) =
f(z,u(t,x), z) satisfies common conditions to ensure the existence and unique-
ness of a solution of a stochastic differential equation of the form (1). One can
find these conditions in the book (A. Kochubei, Pseudo-differential equations
and stochastics over non-archimedian fields. Marcel Dekker Inc). Assume in
addition that uo(x) is a bounded scalar function defined on Q.

Set

u(s, 1) = By el €OuEENdT o (¢(T))]. @)

Theorem 1. Assume C 1 holds and both f(xz,u,z) € Q, and c(z,u) €
RYx R are Lipschitz continuous in x € Qp and u € R% in corresponding norms.
Besides assume that they are of polynomial growth in u € R% and bounded in x.
Then there exists a unique solution of (1) (2). In addition the function u(s,x)
defined by (2) satisfies the following Cauchy problem

Ou(s,x)

) 4 ol uls, 1) (s, )+
pa_1 —a—1 _
P [ st Sl ). 2) — s o)l e =0, 3

W, ) = uo(a). (4)

Remark. Note that if instead of n(t) = explo cu(rE()dr ¢ Rl n(0) =1
we consider a solution of a linear equation in R? x R?

dn(t) ZC(t,«E(t))n(t)dH/ V@), ult, £(1), 2)n(t)valdt, dz),n(s) = 1.

Qp

We can extend the above result and construct a probabilistic representation to
the following Cauchy problem
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9v(s,z) +c(, o(s, x))o(s, )+

0Os
T, D) 2otesw + f vt ), L
s [ s+ oot o).2) = ols, )],z =0,

v(T,x) = uo(x)
in the form V (s, x) = Es z[n* (T)uo(&(T))].

Aknowledgement. The support of DFG Project 436 RUS 113/809/0-1
and RFBR Grant 05-01-04002-NNIO-a are gratefully acknowledged.

[1] Ya. Belopolskaya, Systems of quasilinear integro-differential equations
and Markov processes associated with them, Probabilistic distributions in infinite
dimensional spaces. Nauk. Dumka, (1978) p. 5-21.

On the first return problem for the ultrametric diffusion process
A. Kh. Bikulov', A. P. Zubarev?

L: N.N.Semenov Institute of Chemical Physics, Moscow, Russia, aida@hovanka.ru
2: The State Academy of Railways, Samara, Russia, apzubarev@mail.ru

3ajsaya o 1epBOM BO3BpAallleHUU
JJIs mpoliecca yJabTpaMeTpuvdeckoi guddy3un

A. X. Bukysios!, A. II. By6apes>

L: Huemumym zumuneckoti gusuxy um. H.H.Cemenosa PAH, aida@hovanka.ru
2: Camapcras zocydapemeennasn axademus nymeti coobuernus, Camapa, apzubarev@mail.ru

J1st ciry9aifHOro Tporiecca ONUCHIBAIONIEIOCsS YPaBHEHHEM yIbTPaMeTpHde-
ckoit muddysun ¢ oneparopom BiiamMupoBa OCTABIEHBI U PENIEHBI 331491 O
[IEPBOM BO3BDPAIIEHUN (JJOCTUXKEHNN) CUCTEMBI B HAYAJIbHOE COCTOsIHUE (J0CTH-
JKEHUsT HEKOTOPO#i obsiactn). B nauHO# paboTe MoIyIeHO ypaBHEHN JJisl UIOTHO-
CTH PACIPEJICJICHIs CIyIaiHON BEJMINHBl MOMEHTA BPEMEHH IIEPBOIO BO3Bpa-
IIeHns (JJOCTHKEHHsI) ¥ UCCIE0BAHBI €r0 CBOHCTBA.
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Mumford dendrograms and discrete p-adic symmetries
P.E. Bradley

Universitat Karlsruhe, Germany
bradley@ifib.uni-karlsruhe.de

In this talk, we present an effective encoding of dendrograms by embedding
them into the Bruhat-Tits trees associated to p-adic number fields. As an appli-
cation, we show how strings over a finite alphabet can be encoded in cyclotomic
extensions of Q, and discuss p-adic DNA encoding. The application leads to
fast p-adic agglomerative hierarchic algorithms similar to the ones recently used
e.g. by A. Khrennikov and others. From the viewpoint of p-adic geometry, to
encode a dendrogram X in a p-adic field K means to fix a set S of K-rational
punctures on the p-adic projective line P*. To P!\ S is associated in a natural
way a subtree inside the Bruhat-Tits tree which recovers X, a method first used
by F. Kato in 1999 in the classification of discrete subgroups of PGL2(K).

Next, we show how the p-adic moduli space My, of P! with n punctures
can be applied to the study of time series of dendrograms and those symmetries
arising from hyperbolic actions on P'. In this way, we can associate to certain
classes of dynamical systems a Mumford curve, i.e. a p-adic algebraic curve with
totally degenerate reduction modulo p.

In the end, we indicate some of our results in the study of general discrete
actions on P!, and their relation to p-adic Hurwitz spaces.

The p-adic quantum plane algebras and quantum Weyl algebra
(with Fana Tangara)

Bertin Diarra

Laboratoire de Mathematiques Complexe Scientifique des Cezeauz, France
Bertin. Diarra@math.univ-bpclermont. fr

Let ¢ be a principal unit of the ring of valuation of a complete valued field K,
extension of the field of p-adic numbers. Generalizing Mahler basis, K. Conrad
has constructed orthonormal basis, depending on ¢, of the space of continuous
functions on the ring of p-adic integers with values in K. Attached to ¢ there
are two models of the quantum plane and a model of the quantum Weyl algebra,
as algebras of bounded operators on the space of p-adic continuous functions.
For ¢ not a root of unit, interesting orthonormal (orthogonal) families of these
algebras are exhibited and providing p-adic completion of quantum plane and
quantum Weyl algebras.
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Schrodinger operators on local fields:
Self-adjointness and path integral representations for propagators

Trond Digernes

The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
digernes@math.ntnu.no

We study matrix valued operators of Schrodinger type over a local field, and
discuss questions related to their self-adjointness. Also, a path integral formula
for such operators is obtained.

Towards p-Adic Genomics
Branko Dragovich! and Alexandra Dragovich?

L Institute of Physics, P.O. Box 57, 11001 Belgrade, Serbia
2 Vavilov Inst. of General Genetics, Gubkin St. 8, Moscow, Russia
e-mail: dragovich@phy.bg.ac.yu

The present talk is devoted to some results in foundations of p-adic modelling
in genomics. Genomics is the study of the genomes which are whole hereditary
information of organisms. Considering nucleotides, codons, DNA and RNA se-
quences, amino acids, and proteins as information systems, we have formulated
the corresponding p-adic formalisms for their investigations. Each of these sys-
tems has its characteristic prime number used for construction of the related
information space. Our formalism of p-adic genomic information systems can
be applied to various concrete cases.

In particular, it is shown that degeneration of the genetic code is a p-adic
phenomenon. Degeneration of the (vertebral mitochondrial) genetic code has a
natural description on the 5-adic space of 64 codons C5(64) = {ng+n1 5+n2 52 :
n; = 1,2,3,4}, where n; are digits related to nucleotides as follows: C = 1, A
=2, T =U =3, G=4. The smallest 5-adic distance between codons joins
them into 16 quadruplets, which under 2-adic distance decay into 32 doublets.
p-Adically close codons are assigned to one of 20 amino acids, which are building
blocks of proteins, or code termination of protein synthesis.

We have also put forward a hypothesis on evolution of the genetic code
assuming that primitive code was based on single nucleotides and chronologically
first four amino acids.

Bibliography B. Dragovich and A. Dragovich, arXiv: g-bio.GN/0607018v1,
arXiv: 0707.0764v1[g-bio.GN], arXiv: 0707.3043[g-bio.OT]
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Path integrals for quadratic Langrangians
on real, p-adic, and adelic spaces

Branko Dragovich ! and Zoran Rakié*

t Institute of Physics, Pregrevica 118, p.o. box 57, 11080 Belgrade-Zemun,
SERBIA

* Faculty of Mathematics, Studentski trg 16, p.o. box 550, 11001 Belgrade,
SERBIA

zrakic@moatf.bg.ac.yu

Path integrals in ordinary, p-adic and adelic quantum mechanics are con-
sidered. The corresponding probability amplitudes /C(:L'”,t”;l'/ ,t") for two-
dimensional systems with quadratic Lagrangians are analytically evaluated and
obtained expressions are generalized to any finite-dimensional spaces. These
exact general formulas are presented in the form which is invariant under inter-
change of the number fields R «— Q,, and Q, < Q,/, p # p’. This invariance
shows that adelic path integral is an essentially fundamental object in mathe-
matical physics of quantum phenomena.

The Ultrametric Corona Problem
Alain Escassut

Universite Blaise Pascal, France
Alain. Escassut@math.univ-bpclermont. fr

Let A be the algebra of bounded analytic functions in the disk |z| < 1 of a
complete algebraically closed field. If a maximal ideal is the kernel of a unique
continuous multiplicative semi-norm, this semi-norm belongs to the closure of
the set of continuous multiplicative semi-norms defined by points of D. If K is
strongly valued, the set continuous multiplicative semi-norm defined by points
of D is dense in the set of of continuous multiplicative semi-norms defined by
maximal ideals. Various other results are showed.
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On orthogonal wavelets and Walsh series
Yu. A. Farkov
OO6 opToroHaJIbHBIX BeiiBJIeTaX U psAax YOoJIIlia
FO. A. ®apkos

Poccutickuti 2zocydapcmeennoili 2eonozopadsedounniii yrusepcumem, Poccus
farkov@list.ru

OCHOBBI T€OpUU PSAJIOB W MPE0OPA3OBaHMIT YOJIIIIa KaK OJHOTO N3 PA3/IesIOB
rapMOHMYECKOTO aHAIM3a U3J10xKeHbl B MoHorpadusx [1, 2|. B To Bpems kak
XapaKTepaMy TPyl BPAICHIH OKPYZKHOCTH SABJISTCH TapMOHIKH €' Ft, bynk-
nuu YoJIlIa sBIsSIOTCS XapaKTepaMu KaHTOpoBoit jguaandeckoii rpymmbst C. Op-
TOTOHAJIbHBIE BEHBJIETHI U COOTBETCTBYIOIIUE UM MAacInTabupyomue pyHKIuH,
[peJICTaBUMbIE B BHJIE JIAKYHAPHBIX PsJIOB Youla, u3ydaaucsk B [3] - [6]. B gact-
HOCTH, B pabore [3] HaiijileHbl yCJI0BUS, IPU KOTOPBIX OPTOrOHAJbHbIE BefiBJIeThI
nopoxkaaror 6esycioBubie 6aszucel B npocrpancrsax LI(C), 1 < ¢ < oo, a B cTa-
The [5] 1OJIyUeHBl TOYHBIE IO TIOPSAIKY ONEHKH MOJLyJIeil TJIaIKOCTH MaCIITabu-
pytomux QyHKIW, nocTpoeHHbIX B [3, 4]. Kak ormedeno B [7], cenuduka no-
CTpOEHM BeiBJIeTOB Ha KaHTOpOBOil rpynie C cBsA3aHa ¢ TeM 0OCTOATeIbLCTBOM,
9TO 9Ta rpymnna (Kak U aJguTuBHAs rpynma Q, palioHAJBHBIX p-aIH<IecKuX
YHCeJT) COAEPXKUT OTKPBITYIO KOMIAKTHYIO IIOJIDYIIILY.

B noknane 6ymer pacckazaHo 00 OCHOBHBIX CBOHCTBAaX OPTOTOHAJILHBIX Beii-
BJIETOB C KOMIIAKTHBIMU HOCUTEJIAMU Ha, JJOKAJILHO KOMIAKTHOI abesieBoii rpy-
ne G, aBasonieiics c1abbIM MPSIMBIM TPOU3BEICHIEM CIEeTHOTO MHOYKECTBA, THK-
JIMYECKUX IPyLIl p-ro nopgaiaka (rpyuiny G uHOrIa Ha3bIBAIOT IPyIioil Busen-
KUHA; IIpu p = 2 91a rpyiua usoMopdHa KauToposoii rpymie C). DiemMeHTaMu
rpynmbsl G ABJISIIOTC MTOCTIEI0BATEIBHOCTH BH/IA

T = (1’]) = ('"aoaoamk;mk+laxk+2a'")a

rnex; € {0,1,...,p—1} yn j € Zuz; =0 nna j < k = k(z). I'pynnosas
onepamsa @ Ha G olpenensiercs Kak IMOKOOPAMHATHOE CJIOKEHHE IO MOLYJIIO
P, & TOIOJIOIHsI BBOAUTCS MOJHOM cucTeMoit okpecrHocreit Hymns: U = { (z;) €
G: z; =0 gna j <11}, | € Z. Bomemum B G AUCKPETHYIO MOATPYIILY
H = {(z;) € G| z; = 0 nna j > 0} u onpenenum asromopdusm A € Aut G
no dopmyne (Az); = xj11. Orobpazkenune A : G — [0, +00) oupeneauM paBeH-

CTBOM
o)=Y azp?,  w=(x;)€q,
JEL
Ob6pazom noarpymisl H nmpu oToOparKeHun A sIBJISIeTCsl MHOYKECTBO HEJIbIX HEOT-
puraresbubix qucest: AN(H) = Z,. Jlna kaxaoro a € N gepes hiy) 06osnatmm
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amemenT u3 G Takoit, 9To A(hjq]) = @ W Bce KOMIOHEHTHI MOCTIEIOBATETHHO-
cru hj,], HaUMHAs ¢ HeKoToporo Homepa, pasbl 0. Tlonoxum taxxe hyy, = 0
mis o = 0. Ilpu srobom mestom n > 2 HalijleHbl HEOOXOAUMBIE U JOCTATOYHBIE
YCJIOBUSL JJI TOTO, YTOOBI PEIIeHUs MACIITAOUPYIONIUX YPABHEHU BUIA

p"—1

p(r) = Y aap(Az © hig) (1)

a=0

reHepupoBasi KpaTHoMacmTabuble anamusbl B L2 (G). Tlokazano, uTo Kazkoe
TaKOe PEIeHNEe (© PA3JIATaeTCs B JIAKYHAPHBIN Psifl 10 000OIEHHBIM (DY HKITHSIM
Yomma. Koadduruents! ag, . . ., apn—1 ypaBaeHus (1) BEIUHCIIAIOTCS IO 3aTaH-
HBEIM 3HaUeHNAM p'* TapaMeTpos by, ..., b,n_1 ¢ moMoOmBIO OBICTPOTO Tpeobpa-
3oBanust Burenkuna — Kpecrencona. [losrydennbie pe3ysibTaThbl HO3BOJISIOT JaTh
IIOJTHOE OIIMCaHIe MHOXKECTBA ITapaMeTpos by, . . ., byn_1, IO KOTOPBIM OIIpeiesis-
I0TCsL OPTOTOHAJIBHBIE BEfiBIETHI U1, . . ., ¢p—1 B L?(G), 1 7151 MAJIbIX 3HAYEHUIT p
7 N OIEHUTDH IJIAJIKOCTD STUX BEHBJIETOB U Macirabupymomeit dpyukmun ¢. Kpo-
M€ TOTO, HalJIeHbI YCJIOBUsI, TIPU KOTOPBHIX (PUHUTHOE PEIeHUe ¢ ypPABHEHUsI
(1) crabuibno B L?(G) n umeer siuHeiiHO He3aBUCHMYIO chcTeMy "Te0uncIen-
wvbIX"caBuros. B ciyuae Xaapa usydaemblii METOJI, IOCTPOEHUSI OPTOrOHAJIBHBIX
BEHBJIETOB IIPUBOJUT K BeiiBjieraM, HoJydeHbIM B 7] ajis rpymmet Fy((2)).
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p-adic Brownian motion over @),
Kenji Kamizono

Faculty of Economics, Nagasaki University, Japan
k-kamiz@nagasaki-u.ac.jp

In this talk, we consider p-adic Brownian motion over @), which was first
introduced by Bikulov [Theoret. and Math. Phys. 119 (1999) 594-604]. We shall
present a direct construction of p-adic white noise and p-adic Brownian motion
over , by means of the Paley-Wiener method, which was originally employed
by Bikulov and Volovich [Izvent. Math. 61 (1997) 537-552] for construction of
p-adic Brownian motion over Zp. We shall also introduce p-adic random walk
over ,/Z, and discuss its weak convergence to p-adic Brownian motion.

Fractal theoretic aspects of local field
H. Kaneko

Tokyo University of Science, Japan
stochos@rs.kagu.tus.ac.jp

Recent development of analysis on fractal is marked by importing method
of function space. For example, theory of capacity is tightly related to Sobolev
space and occasionally it is comparable with the Hausdorff measure.

Kaimanovich, Kumagai, Fukushima and Uemura focused on Besov space
and invented methods to reveal analytic features of fractal sets. In particular,
Besov space B22(F) on fractal set F' has a probabilistic significance, because
it is regarded as the Dirichlet space associated with a-stable process on F'. As
for another importance in the Besov space, we recall that Jonsson and Wallin’s
trace theorem combined with Adam’s imbeddding theorem provides us with
Sobolev inequality on d-set in Euclidean space. This covers a theory of function
spaces on fractal sets.

Investigations of stochastic process are made for example by Albeverio,
Evans, Karwowski, Kochubei, Yasuda and Zhao. On the other hand, the field
of p-adic numbers is contained as a d-set in larger field. Therefore, all this en-
ables us to take potential theoretic approaches to local field based on stochastic
process such as a-stable process.

The purpose of this talk is establishing the Sobolev inequality on d-set in
local field. For the purpose, Jonsson and Wallin’s trace theorem for potential
space will be required.
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As a related topic, we will focus also on a reasonable counterpart of Van der
Corpt sequence on the field of p-adic numbers to shed light on another fractal
theoretic aspect of the field.

Diffusion with ultrametric jumps
Witold Karwowski

Institute of Physics Opole University, Opole, Poland
witoldkarwowski@go2.pl

Introduction in p-adic modeling of cognitive phenomena
Andrei Khrennikov

International Center for Mathematical Modeling in Physics and Cognitive Sciences MSI,
Vazjo University, Sweden
Andrei. Khrennikov@uzxu.se

The aim of this talk is to provide a short introduction in p-adic modeling
of cognitive phenomena. We start with introduction of p-adic mental space, its

neurophysiological basis, modeling of psychological processes, including Freud’s
psychoanalysis.

On p-adic Gibbs measures of countable
state Potts model on the Cayley tree

A.Yu.Khrennikov

International Center for Mathematical Modeling MSI
Vaxjo University, Vaxjo, Sweden
Andrei. Khrennikov@msi.vzu.se

F.M.Mukhamedov
Faculty of Sciences,
International Islamic University Malaysia, Kuantan, Malaysia
far75m@yandex.Tu

We develop p-adic probability theory approaches to study of countable state
nearest-neighbor Potts models on a Cayley tree over p-adic filed. Especially, we
are interested in construction of p-adic Gibbs measure for the mentioned model.
Such measures are more natural concrete examples of p-adic Markov processes
(see [2], for definitions). When states are finite, say ¢, then the corresponding
p-adic ¢g-state Potts models on the same tree have been studied in [3,4]. There
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it was established that a phase transition occurs if ¢ is divisible by p. This
shows that the transition depends on the number of spins q. The case under
consideration is different from the previous investigations, here spins take their
values in a countable set.

For the model we give a construction of p-adic Gibbs measures which depends
on weight A\. Using Kolmogorov extension Theorem [2], an investigation of
such measures is reduced to examination of an infinite-dimensional recursion
equation. Note that comparing with a real case, in a p-adic setting, a priori
the existence of such kind of measures for the model is not known. Since,
there is no much information about topological properties of the set of all p-
adic measures defined even on compact spaces. In the real case, there is so
called the Dobrushin’s Theorem [1] which gives a sufficient condition for the
existence of the Gibbs measure for a large class of Hamiltonians. Studying the
derived equation under some condition on weights, we prove absence of the
phase transition. Note that, for the real counterparts of the model, analogous
results are unknown. It turns out that the found condition does not depend on
values of the prime p, therefore, a similar fact is not true when the number of
spins is finite. For the homogeneous p-adic Potts model, and show under that
founded condition, we prove the existence of the p-adic Gibbs measure p. Then
we establish boundedness one, and prove continuous dependence the measure
s on A. As well as we prove one limit theorem for py.
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p-Adic wavelets and their application to linear
and nonlinear pseudo-differential evolutionary equations

A. Yu. Khrennikov
International Center for Mathematical Modelling in Physics
and Cognitive Sciences MSI, Vizjé University, Vdzjo, Sweden
andrei.khrennikov@msi.vxu.se
V. M. Shelkovich
St.-Petersburg State Architecture and Civil Engineering University, Russia
shelkv@vs1567.spb.edu

We introduce a new class of non-Haar multidimensional p-adic compactly
supported wavelets [3]. In one-dimensional case this class includes the Kozyrev
p-adic wavelets [4]. These wavelets form an orthonormal basis in L*(Q, ). We
derive a criterion for a multidimensional p-adic wavelet to be an eigenfunction
for a pseudo-differential operator introduced in [1]. This criterion holds for a
multidimensional fractional operator, i.e., these wavelets are eigenfunctions of
the fractional operator. p-Adic wavelet bases are used to construct solutions of
linear and nonlinear pseudo-differential evolutionary equations (see [2]).

The second author (V. S.) was supported by DFG Project 436 RUS 113/809
and Grant 05-01-04002-NNIOa of Russian Foundation for Basic Research.
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A non-Archimedean wave equation
A.N. Kochubei
Institute of Mathematics of NAS, Ukraine

kochubei@i.com.ua

Let K be a non-Archimedean local field with the normalized absolute value
| - |. Tt is shown that a ”plane wave” f(t + wixy + -+ + wpey), where f is a

Bruhat-Schwartz complex-valued test function on K, (t,z1,...,2,) € K",
max lw;j| = 1, satisfies, for any f, a certain homogeneous pseudo-differential
<ign

equation, an analog of the classical wave equation. A theory of the Cauchy
problem for this equation is developed.

p—Adic model of the genetic code
Sergei Kozyrev

Steklov Mathematical Institute, Moscow, Russia
kozyrev@mi.ras.ru

We introduce the simple parametrization for the space of codons (triples of
nucleotides) by 8 x 8 table. This table (which we call the diadic plane) possesses
the natural 2-adic ultrametric. We show that after this parametrization the
genetic code will be a locally constant map of the simple form. The local
constancy of this map will describe degeneracy of the genetic code.

The map of the genetic code defines 2-adic ultrametric on the space of amino
acids. We show that hydrophobic amino acids will be clustered in two balls with
respect to this ultrametric. Therefore the introduced parametrization of space
of codons exhibits the hidden regularity of the genetic code.
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The fast Fourier—Heisenberg transform
on the p-adic Heisenberg group
as a natural quantum Fourier transform
with the multiresolution properties of wavelet transforms,
and an interface between the classical and quantum worlds

Valery Labunets

Brictpoe npeobpazoBanune Pypbe-leiizenbepra
Ha p-aamdeckoii rpynne Ieiizenbepra
B KayecTBe MCTUHHOTO KBAHTOBOro nmpeobpa3oBanus Pypbe
C MYJIBTUMACHITAOHBIMU CBOICTBaMU BeliBJIeT-IIpeoObpa30BaHUIA,
a Tak»kKe KakK mHTepdeiic MeXK/1y KJIACCUIEeCKNM M KBAHTOBBIMU MUPaMU

Banepwmit JIaGyHner

Vpanrvckutl 2ocydapemeenmnvili mernuveckull ynusepcumem, Examepunbype, Poccus
Viabunets05Q@Qyahoo.com

Kaxk u3Bectno, oneparopuo-3uadnoe npeodbpazosanne Oypbe peasnusyer mpo-
neypy KBantuzanuu Beitisg. Ona orobpazkaeT KJIACCHIECKU MUDP HA KBaHTO-
BhIil. VI3BeCTHO TakzKe, YTO HADOP OIEPATOPHO-3HAYHBIX IIpeobpazoBanuii Dy-
pbe, IapaMeTpU30BaHHbINH Pa3IMYHBIMU [TOCTOsIHHbIMY [L1aHKa, hopMupyer moJi-
HBIII HAOOP HENPUBOIMMBIX IIPEICTaBICHUN rpynnbl leiizenbepra Has mojem
BemecTBeHHbIX dmces. Camo mpeobpazosanne Pypoe-leitzenbepra peasmsyer
nabop BeitseBckux nponemnyp KBanruzanuu (IapaMeTpU30BAHHbBIA HOCTOAHHON
ITaHKa), KOTOPBIE OTOOPAYKAIOT KIACCHIECKUH MUD Ha KBAHTOBBIE MUDBI C Pa3-
JINYHBIMU TIOCTOSTHHBIME [11aHKA.

B pabore j0ka3biBaeTCsl, YTO UMEET MECTO WHAsl CUTYAIlUsl, €CJIM PACCMaT-
puBarh rpymnmy [eiizenbepra Haj KOJbIAMEA BBIYETOB 10 MOIYIIO P W HAL p-
AJIMIECKUMU 9UCJIAMU. DTa TPYIIa OMUChIBAeT (ha30BOE MPOCTPAHCTBO KBAHTO-
BBIX CHCTEM C KOHEYHBIM YHCJIOM COCTOSIHUM, HAIPUMED, KBAHTOBBIE PEIUCTPHI.
B srom cityuae rpynna leiizenbepra nveer HEIPUBOIMMBIE [IPEJICTABJIEHUS PA3-
JIMIHBIX pa3MepHocTell, a mpeodbpasoBanne Pypbe-leiizenbepra peasmsyer Ha-
60p mporeayp KBaHTH3AIMHN Beilis, KoTopble 0TOOParXKaoT KJIACCHIECKUI MUP
Ha HaOOp HEM30MOP(GHBIX KBAHTOBBIX MUPOB Pa3JIUYIHOI pazmepHocTH. [1oaTo-
My mpeobpazopanue Pypne-leiizenbepra MoXKeT TpaKTOBAThCs To-pa3HoMy. Bo-
[IEPBBIX, 3TO HUHTepdEc MEeXy KJIACCHYeCKAM W KBAHTOBBIMH MUPAMHU, BO-
BTOPBIX, 3TO UCTUHHO KBaHTOBOe NpeobpasoBanune @ypbe, B TOM CMBICJIE, UTO
OHO CTABHUT B COOTBETCTBHE KJIACCHIECKOMY MHUDPY HE €r0 CIeKTPAJIHHOE IIPE/I-
craB/ieHne, a HADOP KBAHTOBBIX MUPOB. B-Tperbmx, Tak KakK KBaHTOBBIE MU-
PbI Pas3JIMIHON pazMepHocTU 06pa3yor GamHio (“Marpenky”’) yMEeHbIIAIOIIUXCS
KBAHTOBBIX MUPOB, TO 9TO IPeobpa30BaHue MOXKHO pacCMaTPUBATh KaK BeilBJier-
IpeobpazoBaHne, peasin3yoliee MHOIOMACIITAOHBIE IIPEJICTABIEHH KBaHTOBBIX
MHPOB.
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B moxmaze crpomtes mporeaypa 6sicTporo npeobpaszopanu Pypoe-leitzen-
6epra. [IpuBojsiTcst 6710K-CXeMBI OBICTPOTO AJITOPUTMA HA KJIACCHIECKOM U KBAH-
TOBOM KOMIIbIOTEPAX, T.€. JIAIOTC KJIACCHYECKasi 1 KBAHTOBAs PEAJIN3AIINU HC-
TUHHO KBaHTOBOTO Ipeobpaszosanus Pypbe (B 00/uKe npeobpasosanusa Pypbe-
Teitzenbepra).

Real and p-adic fractal strings and their complex dimensions
Michael Laurent Lapidus

University of California, Department of Mathematics, Riverside, USA
lapidus@math.ucr.edu

We will give an overview of the theory of complex dimensions of fractal
strings, as developed in the two research monographs by Machiel van Franken-
huijsen and the author.

Kolmogorov widths in non-Archimedean spaces
N.N. Leonov

Institute of Sociology, National Academy of Sciences, Belarus
algomat@tut.by

Since A. Kolmogorov [1] introduced the notion of width, various widths were
widely investigated (see [2] for a survey). However, the obtained results con-
cern linear metric spaces over the real numbers field or the complex numbers
field. Apparently, for the first time Kolmogorov widths in linear metric space
over a non-Archimedean field were considered by the author [3]. Some general
results were obtained, and these results were applied to the class of function in
the field of p-adic field, that satisfy Lipschitz condition of the degree 1. In this
talk, we continue investigation of width problem for non-Archimedean spaces.
Kolmogorov widths for the class of function with values in arbitrary complete
non-Archimedean discretely normed field that have prescribed continuity mod-
ule are found.

We use some notions from approximation theory. Details can be found, for
example, in [2]. Let (X, d) be a metric space. Suppose A C X, z € X. Denote

d(xz,A) = inf d .
(2, 4) = inf d(z,y)
We say that d(z, A) is a distance from = to A. Let K be bounded. Define

deviation K from A as

§(K,A) = fg}g d(z, A). (5)
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The problem of finding §(K, A) is known as the problem of the best approz-
imation of K by A. Let A be some class of subsets of X. The value

da(K) = jof §(K, 4) (6)

is said to be A-width of K.

Suppose F is a Banach space over a normed field (K, | - |), the distance in E
is induced by the norm, and £,, is the class of all n-dimensional vector subspaces
of E. Then d,(K) £ dg, (K) is called Kolmogorov or n-dimensional Kolmogorov
width.

Suppose (X, d) is an infinite compact ultrametric space [4]. Denote D =
{d(m,y) | 2,y € X, x # y} For a positive sequence a = (ap, a1, ...) we write
«; | 0 if this sequence strictly decreases and tends to 0 as i — oco. The following
result was announced in [5] and proved in [6].

Theorem 1 D = {aq,qq,...}, where a; | 0. In other words, in this case
0 is a unique limit point of D.

We say that some metric space is homogeneous if every two closed balls of
the same radius are isometric. Further we suppose that the space (X,d) is
homogeneous. It is known [4] that for any r > 0 there exists a unique partition
of X into disjoint balls of radius r. Denote v; the power of such partition for
T =0q4.

Suppose (K, |-]) is a complete non-Archimedean discretely normed field.
Denote C(X,K) the non-archimedean Banach space of all continuous functions
from X to K equipped with the supremum norm and V' the range of the valuation
|-]. Let w : RT — RT be a continuous strictly increasing function such that
w(0) = 0. Let

H = {u € C(X,K) | lu(z) —u(y)| < w(d(z,y)) Ve,y € X}.
One can show that
H={ueC(X,K)||u(z) —uly)] < wla), if d(z,y) = s }.
Define a function w on D by
(o) =max [a|a € V,a <w(o)].
Theorem 2 For any i

dVi (H) = dViJrl(H) == dvi+1*1(H) - 1’17(041)
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Levy process in p-adics and hierarchical systems
Krystyna Lukierska-Walasek

University of Zielona Gora, Institute of Physics, Poland
klukie@proton.if.uz.zgora.pl

We consider the model proposed by Ogielski and Stein to describe relax-

ation in hierarchical systems.For our purpose we specify random walk on p-adic
integer numbers,which occurs to be Levy process.A trajectory of a Levy path
have some fractal dimension, which correspond to a fractional derivative of a
pseudodifferential diffusion equation.
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Probabilistic structures and probabilistic sets
V.M. Maximov
BeposiTHOCTHBIE CTPYKTYPbI I BEPOSITHOCTHBIE MHOXKECTBa
B.M. MakcumMmoB

Russian State University for Humanities, Poccus, Mocksa
vm_ mazimov@mail.ru

BroguTcst oHdTHE BEPOSTHOCTHON CTPYKTYPBI U BEPOSTHOCTHOTO MHOYKE-
cTBa. DTO CyTh ajarebpandeckue CTPYKTYPbI, ¢ MOMOIIHI0 KOTOPBIX MOXKHO MO-
JeJIMPOBATH MEPBI U CJIyYaiiHble BeJMINHBI. BepOATHOCTHBIE CTPYKTYPBI €CTe-
CTBEHHO CTPOSITCS Ha OyJieaHe, aHAJJOTUYHO TOMY KaK €CTECTBEHHO BO3HUKAIOT
TIOHSTHUS pelrieTku u OyaeBoit aaredpwl Ha Oyseane.

Jloka3biBaeTcss TeopemMas

Besikasi KoHedHAst BEPOSATHOCTHASI CTPYKTypa H30MOP(MHA BEPOATHOCTHON
CTPyKType Oyireana.

OTHOCUTEIEHO BEPOSITHOCTHOIO MHOYKECTBA ITPEJIJIOZKEHA IUIIOTE3A, UITO BCsI-
KO€ KOMITAKTHOE BEpOSITHOCTHOE MHOXKECTBO M30MOP(MHO OTPE3KY BEleCTBEHHON
ocu [0,1], paccMaTpUBaeMOMY € €CTECTBEHHBIMU OIIEPAIIUSIMU U TOIOJIOTHEH.

Algorithm of computation
of vertex parts of p-adic Feynman integrals

Moukadas Missarov

Anroput™M BbIYHUCIEHUS BEPIIMHHBIX YacTeil
p-aguviecknx PeifHMaHOBCKUX WHTErPaJIOB

Myxkanac Muccapos

Kasanckut Tocydapemeennuis Ynusepcumem, Kasanw, Poccus
Moukadas. Missarov@ksu.ru

Paccmarpusatorcst 06001ennbie p-ajgutdeckue (hefiHMaHOBCKAE aMILIUTY/IbI
B KOODJIMHATHOM IIP€JICTABJIEHUN, ITPOTIIATaTOPHI KOTOPBIX 33JaI0TC KaK ITPOU3-
BOJIbHASI CTEIEHb P-aUYIECKO HOPMBbI aprymenTa. IIpesiyiozKeH ajropuT™ BbI-
YUCJIEHUS BEPIIMHHBIX TacTeil aMIJIUTYZ B CXeMaX aHAJUTUIECKOU W pa3Mep-
HO¥ TTepEHOPMUPOBOK, OCHOBAHHBII Ha PA3/JI0KEHUIX P-aINIECKIX NHTETPAJIOB
110 NepaApXUYECKUM CEMENCTBAM.
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From Data to the p-Adic or Ultrametric Model:
Recent Results

Fionn Murtagh

Department of Computer Science
Royal Holloway, University of London
Egham TW20 0EX, UK
fmurtagh@acm.org

p-Adic or ultrametric modeling of data, representing phenomena or pro-
cesses, can advance beyond the current state of the art in data analysis and
data mining. We consider a number of areas to illustrate the new perspectives
opened up by such analysis. We show how very high dimensional data are best
considered as emedded in an ultrametric space. In a range of examples, we show
how high dimensional spaces endowed with a scalar product can be embedded in
an ultrametric topology. As a case study, we consider the segmentation of very
high frequency financial signals. We look at the role played by symmetry in data
analysis and data mining, and explain why hierarchy provides a unifying view.
As pointed out by Benois-Pineau and Khrennikov (2007), a p-adic viewpoint is
very powerful for change detection in data streams. We look at the application
of ultrametric data analsis for the understanding of change, anomaly and inno-
vation. We use film scripts, which constitute a convenient way of representing
narrative, and indeed the flow of thought and language (Chafe, 1979).
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Beta-function of Bruhat—Tits building
and p-adic Berezin kernels

Yuri Neretin
ITEP, Russia

neretin@mccme.ru

For the space Lat,, of all the lattices in a p-adic n-dimensional linear space we
obtain an analog of matrix beta-functions; this beta-function has a degeneration
to the Tamagawa zeta-function. We propose an analog of Berezin kernels for
Lat,,. We obtain conditions of positive definiteness of these kernels and explicit
Plancherel formula.

Approximating 2-adic polynomial dynamical systems
Marcus Nilsson

Vazjo University, Sweden
Marcus. Nilsson@uzxu.se

Geometrization of quantum physics
0O.A. Olkhov

N.N.Semenov Institute of Chemical Physics,
Russian academy of sciences Poccus (Mocksa)
olega@gagarinclub.ru

The new concept of quantum physics is suggested where all matter (par-
ticles, fields, quanta, atoms) is specific deformations of the space itself—the
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space topological defects. This explains the light velocity invariance and all
peculiar properties of quantum formalism. This gives also possibility for over-
coming difficulties of the many-body problem. Preliminary results: Journ.of
Phys.:Conf.Ser., 2007, 67, 012037 (arXiv:0706.3461). The work was presented
and discussed at the conference in Vaxjo, Sweden

Compactification of Z via periodicity
V.I. Polischook

St. Petersburg State Polytechnical University, Russia
(polischook@list.ru)

The aim of the present talk is to show very close relations between arith-
metics and the theory of commutative Banach algebras. Our approach is based
on the compactification of Z via periodicity, which seems very natural. Indeed,
on the one hand, the sum (or the product) of m— and n—periodic functions on
Z has each common multiple of m and n as period. On the other hand, if a
function f is m— and n— periodic simultaneously then any common divisor of m
and n is also a period of f. As divisibility is a main notion of arithmetics, the
algebra A of all complex—valued periodic functions on Z (with termwise opera-
tions) must play an important role in number theory. In fact, there are many
works (cf. [2,4,5]) concerned with the almost-periodic functions which are limit
elements of A with respect to various norms. We call by A—character any non—
zero multiplicative linear functional ¥ : A — C. Denote by 6™ the character
u — u(n). The set G of all characters is a commutative ring with the additive
@ and multiplicative ® convolutions as ring operations, zero §° and the unit §'.
Moreover, §™ @ 6" = §™t", §™ @ " = §™". By associating each integer m with
the element 6" of the ring G, we obtain the canonical embedding Z — G which
is a strict homomorphism of the rings.

We call by p-equivalent two characters ¢ and 1 coinciding on the finite—
dimensional subalgebra of all p-periodic functions. Let V,(¢)) be the p-
equivalence class (p—cluster) containing the character ¢. These classes form
a base of neighborhoods of the point 1) € G, which defines a topology 7 compat-
ible with the ring structure of G. The ring (G, 7) is a compact Hausdorff space
including the image of Z under canonical embedding as dense subset. A home-
omorphic image of (G, 7) can be realized as a discontinuum D which consists
of final values of increasing bounded trajectories of some R—valued branching
stochastic process. Besides, the Lebesgue measure mes(FE) of each measurable
subset £ C D is equal to the Haar measure of its preimage F' C G.

The main result of the paper [6] asserts the isomorphism of the classical
polyadic ring with divisibility topology (Van Dantzig-Novoselov’s model [1,3])

29



and the topological ring (G, 7) of A—characters with convolution ring operations
and the cluster topology.
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RUS 113/809/0-1) and RFBR (Grant 05-01-04002-NNIOa) for the financial
support.

Bibliography

[1] Van Dantzig M. D. Nombres universels vl-adiques avec une introduction sur
l’algébre topologique. Ann. Sci. de I’Ecole Norm. Sup., 53, 275-307, 1936.

[2] Delsarte J. Essai sur lapplication de la théorie des fonctions presque—
périodiques a Uarithmétique. Ann. Sci. de I’Ecole Norm. Sup., 62, 185-204,
1945.

[3] Novoselov E. V. Introduction into polyadic analysis. PGU, Petrozavodsk,
1982 (Russian).

[4] Daboussi H. Caractérisation des fonctions multiplicatives presque—B»
périodiques a spectre non vide. Ann. Inst. Fourier, 30, 3, 141-166, 1980.

[5] Mauclaire J.—L. Suites limite—périodiques et théorie des nombres. Proc. Jap.
Acad., Ser. A. 56, 180-182, 223-224, 294-295, 1980; 57, 72-73, 188-190, 223—
225, 1981.

[6] S. Albeverio, V. Polischook, “Prifer’s ideal numbers as Gelfand’s mazimal
ideals”, Preprint at the URL: www.arxiv.org, arXiv:0705.2095v1, 2007.

p-Adic S.N. Bernstein inequality
Ya. V. Radyno
p-Anndeckoe HepaBencTtBo C.H. BepHireiina

4. B. Paabsiao

Benopyceruti 2ocydapemeennoili yrusepcumem, Beaapyco
radyno@bsu.by, yakov_radyno@tut.by

T pUrOHOMETPHIECKHE MOJMHOMBI IIOPSIIKA MEHBIIE JIU00 PABHOTO U SIBJIS-
IOTCSL YACTHBIME CJIy9asiMU TEJIbIX (DYHKIUI IKCIOHEHIMATIBLHOTO THITA MEHBIIE
ymGo pasHoro v. HanmomuuMm, aro nenag dbynkny ¢(), Tie 2 = x+1iy, Ha3bIBAeTCst
yHKIIME SKCIOHEHIIMATBHOTO THITA MEHBIIE JIMGO PABHOTO V, €CJIU CIIPABEIJTH-
BO HEPABEHCTBO

lp(2)| < Ce™* st Beex z € C.

O6oznaunm gepes A, 4(R), 1 < ¢ < 400, MHOXKECTBO BCeX LeJbIX dyHKIuil
9KCIIOHEHITUAJIBHOIO THII, MEHbIIE JIMO0 PABHOIO I/, KOTOPbIE, KaK (PYHKIIUUA OT

30



IeficTBHTEILHOTO IepeMeHHOr0 ¢ € R, mpunazexar npocrpanctsy Lq(R). Ha-
upumep, dynkiua S2E npunaexut npocrpanctsy A, (R), 1 < ¢ < 4o0.
Hns dyukumit uz ¢ € A, 4(R) cupasenyuso Hepasencrso Bepumreitna [1, 2]:

e'llL,m) < vllelL,m)-

HepaBeHCTBO TOYHO, TaK KaK CyMIECTBYIOT (DYHKIMHU I KOTOPBIX B HEM JO-
CTUraeTcd 3HAK PaBeHCTBa. BoJiee TOro, 3T0 HEPABEHCTBO XapaKTEPHU3YeT MPo-
crpauctBo A, 4(R), a umenno, ecim yia dyuxkunn ¢ € Ly(R) cupaseniuso
HepaBeHCTBO

(n)
sup ||<P ||Lq(R) < 100

)
n>0 v

o p € A, 4(R) [1].

Msr unTepecyemMcsl XapaKTepHCTHKON mpocrpaHcTBa A, 4(R), rme Bmecto
omeparopa aud@PEepPeHITNPOBAHN CTOUT IICEBA0ANMPEPEHITNATBHBIA OmepaTop
Baagumuposa D [3].

CrpaBeJiiBa, CJIeJIyOIIa

Teopema. 3amrnymoe nodnpocmparcmeso gynkyutl v € Lo(Qp), daa xo-
TOPLIT CNPABEdAUBO HEpaseHcmeo Beprwmetina

1Dullr2q,) < P°Iulla(Q,)

COCOUM U3 AOKAADHO NOCTROANHUT Pynkyul u € La(Q,), napamemp nocmo-
AHCMBA KOMOPHLL > —V.
Jlpyrumu cJioBaMu, p-a InaecKoii MOJIEIbIO (DYHKIUI SKCIIOHEHIUAILHOTO TH-
v
ma < p” SBIISIOTCS JIOKAIBHO IOCTOsIHHEBIE (byHKINU u3 Lo(Qp) ¢ mapamerpoMm
HOCTOSHCTBA > —U.

1. Axwuezep H.U. Jlekuun no Teopun annpokcumanuu. M., 1965.

2. Huxomnbckuit C.H. Tlpubnunkenne byHKINNA MHOIMX II€PEMEHHBIX M TEOPEMBI
Biaoxkenusi. M., 1969.

3. Bragumupos B.C., Bonosuu U.B., 3esnenos E.JM. p-Aqnuecknit anann3 n mare-
matndeckas dusuka. M., 1994.

4. Panpmo $1.B. IIpocTpancTBO BEKTOPOB KCHOHEeHIMaabHoro tuna // Hoka. AH
BCCP. 1983. T. 27, Ne9., C. 791-793.
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P-adic Splines and Riesz-Volkenborn’s Potential
A. Radyna, A. Sender

Belarusian State University, Belarus
alesr@tut.by

p-Adic linear splines were introduced in [1] and used for approximation of
real-valued functions, but for p-adic valued functions they were not suitable. p-
Adic splines introduced in [2] solve this problem and open new fact: p-adic spline
is an integral sum of Volkenborn’s integral from a density function multiplied
by Riesz kernel. Such integral we call Riesz-Volkenborn’s potential.

For any prime number p denote by Q, the set of p-adic numbers equipped by
the norm |z|,. Denote by B,[a] = {r € Q, : |z —al|, <p7}, and by Ip [, the
characteristic function of the ball. Let a € Q, a > 1. Denote by K the minimal
field containing Q, and {p®}. The norm |-|, is prolonged to K by using standard
properties of | - [p: [p®[, = p™*, |ablp = [alp|blp, |a + bl, < max([alp, [b]p).

Recall that Volkenborn’s integral of f € C1(Z,;K) is a number [ f(x)dz :=

ZP
pr—1

lim p~ Z f(4), see [3] for details.

n—oo

Itisa hnear continuous functional on CM (Z,;K). The next inequality holds

true
‘ / f(x)dx
ZP
P

11 = e s )l s )

< pllfll1, where (7)

).

We fix o > 1 and consider the function Z, > x — |z|,;* € K.

Lemma 1. The function (z) = |z|,* is a continuously differential and
¢'(z) = 0.

Theorem 1.[4] For any a € Z,, m € NU{0}, and o € Q, a > 1 there exist
p-adic splines Ly (x, ) such that Ly (z,a) = Ip_, [q(2) as n — oo.

Theorem 2. For the sequence {Ln(z, oz)}n 1 from Theorem 1 there exists
a function A*™ such that L, (z,a) = f

A% () dt

~— . Since the linear
\tfa:|p

From theorems we immediately have I B,m[a]( )= [
Z

span of characteristic functions of all balls on Z, is dense in C(Z,;K) then
by linearity and continuity of Volkenborn’s integral we shall have the integral
representation for any function from C(Z,;K).
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Fourier transform of vector-valued functions
over p-adic field

Yauhen Radyna

Belarusian State University, Belarus
yauhen _radyna@tut.by

In paper [1] Polish mathematician Kwapieri considered Fourier transform of
functions taking value in Banach spaces. One of his results is up to notation the
following. Let X be a Banach space. Consider space La(R, X) of functions on
the real axis taking value in X, and square-integrable in Bochner sense. Banach
space X is isomorphic to a Hilbert space if and only if Fourier transform (which
is initially defined on a suitable dense subset of Lo(R, X))

f:Lg(R,X)—>L2(R,X):x(t)»—>(fac)(s):/Re_les’fx(t)dt.

is a bounded operator.

Now we are interested in Fourier transform of X-valued functions on Q.
Space L2(Qp, X) of Bochner square-integrable functions contains a dense subset
L3(Qp) ® X where Fourier transform act by

N N
Fi) )@= (Fen
k=1 k=1
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We prove the following

Theorem Banach space X is isomorphic to a Hilbert space if and only if
Fourier transform

F:8(Qp, X) — La(Qp, X) : z(t) > (Fa)(s) = / 2™ Hstho g (t) dt.
is a bounded operator.

Proof uses a smaller subspace of locally constant compactly-supported X-
valued functions S(Q,, X) ~S(Q,) ® X C L2(Q,) ® X.

1. Kwapien S. Isomorphic characterizations of inner product spaces by orthogonal
series with vector-valued coefficients. Studia mathematica, vol. XLIV (1972),
583-595.

Non-Commutative Geometry and Quantization
of the Universal Teichmiiller Space

Armen Sergeev

Steklov Mathematical Institute, Moscow, Russia

The universal Teichmiiller space 7 consists of quasisymmetric homeomor-
phisms of the circle S! (i.e. orientation-preserving homeomorphisms of S!,
extending to quasiconformal maps of the disc), normalized modulo Mobius
transformations. It has a natural Kahler structure and contains all classical
Teichmiiller spaces (of compact Riemann surfaces of finite genus) as complex
submanifolds. Moreover, 7 includes also the space S of diffeomorphisms of the
circle, normalized modulo M&bius transformations, which can be considered as
a ”smooth” part of 7. The space S can be quantized, using its embedding into
an infinite-dimensional Siegel disc. However, this method does not apply to the
whole universal Teichmiiller space. For its quantization we use the ” quantized
calculus” of A.Connes.

On the dynamical systems with 2-adic time
(a talk joint with V. Dremov and P. Vytnova)

George Shabat
Russian State University for Humanities, Poccus, Mockea

shabat@mccme.ru

A general concept of dynamical system with non-archimedean time will be
suggested. It will be illustrated by a certain limit of the dynamics on the sets
of 2™-periodic points of real quadratic maps.
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p-Adic refinable functions and MRA-based wavelets

V. M. Shelkovich
St.-Petersburg State Architecture and Civil Engineering University, Russia
shelkv@vs1567.spb.edu
M. Skopina
Department of Applied Mathematics and Control Processes,
St. Petersburg State University, Russia
skopina@MS1167.spb.edu

The notion of p-adic multiresolution analysis (MRA) is introduced and a
general scheme for its construction is described. We study refinement equations
whose solutions (refinable functions) are boundedly limited. A criterion of or-
thogonality is found for a class of such functions. A method for construction of
refinable functions generating MRAs is given. In particular, this scheme lids us
to the Haar “natural” refinement equation whose solution is the characteristic
function of the unit disc. This equation reflects the fact that the characteris-
tic function of the unit disc is a sum of p characteristic functions of mutually
disjoint discs of radius p~!. This “natural” refinement equation was introduced
in [1]. In contrast to the real setting, the refinable function generating p-adic
Haar MRA is 1-periodic, which never holds for real refinable functions. This
fact implies that there exist infinity many different orthonormal wavelet bases
generated by the same Haar MRA. For p = 2 all such bases are described in [3].
One of these bases coincides with Kozyrev’s basis [2].

A criterion for multidimensional p-adic wavelets to be eigenfunctions for a
pseudo-differential operator is derived.

The first author (V. S.) is supported by DFG Project 436 RUS 113/809
and Grant 05-01-04002-NNIOa of Russian Foundation for Basic Research, the
second author (M. S.) is supported by Grant 06-01-00457 of Russian Foundation
for Basic Research.

[1] A.Yu. Khrennikov, V.M. Shelkovich, p-Adic multidimensional wavelets
and their application to p-adic pseudo-differential operators, (2006), Preprint
at the url: http://arxiv.org/abs/math-ph/0612049
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Critical exponents in hierarchical models
R.G. Stepanov

Kazan State University, Russian Federation
roman.stepanov@ksu.ru

We consider 4-component fermionic Dyson model on a hierarchical lattice.
Critical exponent v was calculated without using a perturbative technique. We
show that v = Inp/Inz, where p is a parameter of lattice, x is a root of the
polynomial equation

?(pt—1)+z(da+6+4a " +2p7 )+
+p 4+ p—4a®—8a—10—8a' —4a" 2+
+ a7t (4a + 64407 + 2p) +(p-1)z"%=0,

where a = p*t1/2 ¢ = o — 3/2, a is a parameter of renormalization group.

This result was compared to a known result for v calculated up to 3rd order
in powers of ¢ in p-adic p*-model with O(N)-symmetry (for N = —4). Earlier it
was obtained using Feynman diagrammatic technique. Calculations show that
both results coincide. It means that both perturbation theory and rigorous
methods developed for hierarchical and p-adic models give the same results.

For general N we show that critical exponent ¥ may be calculated via find-
ing roots of some finite polynom. An interesting problem is to find analogous
properties in Euclidean models.

Two-periodical Dynamics in Finite Extensions
of the p-adic Number Field

Per-Anders Svensson
Vazjo University, Sweden

Per-Anders.Svensson@uzu.se

We investigate two-periodic points of a certain class of dynamical systems,
defined over the field of p-adic numbers. We determine the topological properties
of these points, and the nature of the smallest finite extension in which the
periodic points reside.
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p-adic Schrodinger-Type Operator with Point Interactions
Sergiy Torba
Institute of Mathematics, National Academy of Science of Ukraine, Ukraine

sergiy.torba@gmail.com

p-adic Schrodinger-Type Operator D® + V is studied, where D® is the oper-
ator of fractional differentiation and V is a singulat potential containing Dirac
delta function concentrated at the set of arbitrary n p-adic points. It is showed
that such a problem is well-posed for ¢ > 1/2 and the singular potential is
form-bounded for a > 1. In the latter case, the spectral analysis of self-adjoint
realisations is carried out.

Boundary-value problems for open and closed
p-adic strings theory

V.S. Vladimirov (Russia)

Steklov Mathematical Institute
vladim@mi.ras.ru

For description the tachyon dynamics for p-adic strings the nonlinear pseu-
dodifferential equation

Pr(t) = (€%y)(1), tER, (1)

has been suggested[1-2]. The boundary conditions are supplied: for open string
(xo =1/4,n =p)

T/)(*OO) = 71711)(00) = 17p - Odda 7/1(*00) = 071/)(00) = ]-ap — even;

(p is any prime number); for closed strings (z¢ = 1/2,n = p?)

We discuss the following topics concerning the b.-v.ps posed.
e Existens or non-existens and uniqueness of solutions[3-4].
e A priori properties and estimates of solutions|5].

e Hermite-series expansion of solutions|[5].

e Reducing the posed b.-v.ps to nonlinear heat equation[5]:

Uy = U, 0 < & < o, t €R,  w(0,t) = (t), u(xo, t) = Y™ (t). (2)
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We point out that the variables z and ¢ in equation (2) are interchanged com-
pared with the classical heat equation.

e Tchebyshev-series expansion of periodic solutions to b.-v.p. (2).

e Applications of the Gauss quadrature formulas to approximations the equa-
tion (1).

References [1] L.Brekke and P.G.O.Freund, p-Adic Numbers in Physics //

Phys. Rep. (Rev. Set.Phys.Lett.),1993, V.233, Nol, P.1-66.

[2] V.S.Vladimirov, Nonlinear equations for p-adic open, closed and open-
closed srings // Theor. Math. Phys., 2006, V.149, No3, P.354-357.

[3] V.S.Vladimirov and Ya.I.Volovich, Nonlinear dynamics equation in p-adic
string theory // Theor. Math. Phys.,2004, V.138, No3, P.355-368.

[4] N.Moeller and B.Zwiebach, Dynamics with infinite many time derivaties
and rolling tachions // JHEP, 2002, V.0210, P.34-.

[5] V.S.Vladimirov, The equation of the p-adic open string for the scalar
tachion field // Izvestiya RAS, ser.math., 2005, V.69, No3, P.487-512.

Quantization of the Riemann Zeta-Function
and p-Adic Pseudodifferential Equations

I1.V. Volovich

Steklov Mathematical Institute, Moscow, Russia
volovich@mi.ras.ru

Motivated by the theory of p-adic strings we consider quantization of the
Riemann zeta-function. We treat the Riemann zeta-function as a symbol of a
pseudodifferential operator ¢(1/2+ i) where O is the d’Alembert operator and
study the corresponding classical and quantum field theories. We show that the
pseudodifferential equation for the zeta-function field is equivalent to a family
of the Klein-Gordon equations with masses defined by the zeros of the Riemann
zeta-function. Quantization of the L-functions in the Fermat-Wiles theory and
in the Langlands program is also indicated.

Ref: Aref’eva 1.Ya. and Volovich 1.V., Quantization of the Riemann Zeta-
Function and Cosmology, International Journal of Geometric Methods in Mod-
ern Physics, Vol. 4, No.5 (2007), pp. 881-895; http://www.arxiv.org/abs/hep-
th/0701284.
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On unification of real and p-adic theories
E.I. Zelenov
O06 00be/IMHEHU BENMIECTBEHHOI M p-aaAndvecKoii Teopwuii
E.N. 3enenos

Steklov Mathematical Institute, Moscow, Russia
zelenov@mi.ras.Tu

Hauunas ¢ pabor B.C.Baamumuposa u U.B.BosioBuua 1o p-ajgudeckoii mare-
MaTUYeCKOU (DU3UKe OOIIENPUHSITON SIBJISIETCS TOYKA 3PEHUS], UTO PE3yJIbTATOM
9KcIIeprMenTa (HaBJII0/IeHNs) SBJISETCS PAIMOHAJIBLHOE IHCIIO.

IIpennaraercss HECKOIBKO BUIOU3MEHEHHAsI TOYKA 3peHusi. A MMeHHO, pe-
3yJIbTATOM 3KCIEPUMEHTA BCErga sBJISeTCSI KOHEYHAa II0CJIeI0BATEJIb-
HOCTb PAIMOHAJBHBIX YHCEJI, ITOCKOJBbKY IKCIIEPUMEHT 3TO BCEra CEPHUs
HaOJIFOIEHUIA.

Wcxonst m3 9TOr0O TOCTYjIaTa, €CTECTBEHHBIM BBIIVISJAT BBHIOOD B KadecTBe
dusugeckoro npocrpancrsa P ciaaboro (T.e. TOJIBKO KOHEYHOE YHCJIO COMHO-
JKUTEJIeH OTJIMYHO OT HyJIsl) UPSIMOrO HPOU3BEJECHUS KOHTUHYYM 9K3EMILISIPOB
JIMTUBHON IPYIIBI IIOJIS PAIMOHAJIBHBIX dncesa ()

P= Hie] Q"

rje [ - MHOXKeCTBO MHJIEKCOB MOITHOCTH KOHTHHYYM. 3aMeTuM, 94To P saBjisiercs
JIUTUBHON abesIeBoil IPYIIIIOi.

EcrecrBennocts BeiOOpa P B KavuecTBe (PU3MIECKOTO IIPOCTPAHCTBA TOATBED-
JKJIaeTcs cieyonmM npocTbiM [Ipeioxkenuem.

IIpennoxkxenue 1 I'pynna P anzebpauvecku usomopdra addumueroti epynne
R gewecmeennviz wucen ¢ duckpemnoti monoaoeuet. I'pynna P anzebpausve-
cKu usomopdra addumueroti epynne Q,(,d) NoAA P-aduMeckur wucens ¢ ouckpem-
HOTU monoso2uel.

JlokazaTesbCTBO cieyer u3 Toro dgakra, aro R4 n Qz(,d) MOYKHO PAcCMaTpHU-
BATH KaK JIMHEHHDBIE IPOCTPAHCTBA HAJI TOJIEM () PAIIMOHAIBHBIX IHCEJI C HECIET-
ubiM 6azucom Lamens. (9.Xpiourt, K.Pocc. AGcrpakTHblii rapMOHUYECKUiT aHa~
m3).

OCHOBHOII BOIIPOC 3aKJIIOYAETCSI B CJIEYIONIEM - BO3MOXKHO JIU [OCTPOEHUE
COJIEPIKATEJIHHON TEOPUH, €CJITN B KAYECTBE IPOCTPAHCTBA (DUBNIECKUX BEJTMINH
(HapuMep, KOOPIUHAT ¥ MMILYJIbCOB) CIY2KUT IPOCTPAHCTBO P?

B kauecTBe mpmmepa Takoil TeOpHH PACCMOTPUM TEOPHUIO IPEICTABJICHUIA
KOMMYTAIIMOHHBIX COOTHOIIEHUI OJITHOMEPHOM KBaHTOBOW MEXaHUKHU.

IIycre V. = P X P - }a30Boe NPOCTPAHCTBO KJIACCUYECKON CHCTEMBI,
B(x,y),x € V,y € V HeBBIPOXKJEHHBII aHTUCUMMETPUIHBIN OMXapakTep Ha
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V xV, te. B ectb dyukmua n3 V X V B mome xommaekcHbx uncesn C,
B:VxV — C, raka qro |f(z,y)] = 1,z € V,y € V, B(xo,y) sBisierc xa-
pakrepoM V npu j06oM dbuKCHpOBaHHOM Zg, 3(, yo) ABJIIETCS XapakTepoM V/
upu Jir060oM GUKCHPOBAHHOM Yo, B3(x,y) = [(y, ), Ipu 5TOM U3 CIPABEJINBOCTH
pasencTBa ((zg,y) = 1 g Becex y € V' caenyer zp = 0.

IIpencrapienneM KOMMYTAIMOHHBIX COOTHOIIEHMI OydeM Ha3bIBaTh Iapy
(H,W), rie H - xomiutekcroe I'niib6eproBo npocrpancTso, a W - orobpazkerne
u3 V B ceMeiicTBO YHUTAPHBIX OIEPATOPOB Ha H , YI0BJIETBOPSIIOIIE COOTHOIIIE-
HUAAM

W(z)W(y) = B(z,y)W (x +y).

HenpusogumocTs u yHHUTApHAS 9KBUBAJEHTHOCTD IIPE/ICTABIEHUN KOMMY TAI[HO-
HBIX COOTHOIIIEHU OIIPEeJIe/IsIeTCsl CTAHIAPTHBIM 00pPa30M.

IIpexk e yeM cOpMyIUPOBATH OCHOBHBIE PE3YJIBTATHI, OIUIIEM BJIOXKEHUE
rpyunbl P B COOCTBEHHYIO TPYIIITY XapaKTepoB P. Yepes ¥ 0603HAYUM TPYIILY
XapaKTePOB & IUTUBHON TPy [TOJIS PAIMOHAJIBHBIX TUCEIT, > = Q (Hamom-
HUM, 9TO 9T0 (baKTOP-TIPYIIIIa IPYIIIBI 1eJiell 10 MOArPYIIIe [VIABHBIX ajeJsieil).
W3 onpenestenus P ciieyer, 9To P = Hie I Yt Eciu B KauecTse Mojgesnn P Bbl-
6pars R(? | cTaHOBUTCS TIOHSTHBIM, YTO MHOYKECTBO 3JIEMEHTOB P HAXOIUTCS BO
B3aMMHOOTHO3HAYHOM COOTBETCTBUAU C MHOXKECTBOM HEIIPEPBHIBHBIX XapaKTEPOB
R, a MHOYXKeCTBO 3JIEMEHTOB P co MHOXKeCTBOM Beex xapakTepoB R, Takum 00-
pasoM ompeJiesieHo Bioxkenne P C P. Cite1oBaTe/IbHO, OIPEJIETIEHO BJIOYKEHUE

Vcv.

ameuanue 1 [lockoavky epynna HenpepueHbir Tapaxmepos wa R usomopdpra
R, R >~ R, mo xomnaxmugurayus Bopa bR epynnu R coenadaem c epynnot

d i
R xomopasa, xax Mol yemanosusy paree, usomopdra 2pynne [Lic; Z* Bao-

orcenue P C P ecmb kanonuveckoe eaoorcenue epynnot P 6 xomnaxmugurayuro
Bopa bP amoti epynnui.

Teopema 1 Mrooicecmeo xaaccos cenapabesvHuiT HENPUGOOUMBIT YHUMAPHO
IKEUBAAEHMHHIT NPEOCTNABAEHUT KOMMYMALUOHHYIT COOMHOWEHUT HATOOUMCA
60 83AUMO0OHOZHAYLHOM COOMBEMCMBUY € MHOHCECTNEOM INEMENMOE PAKMOP-
epynno V) V.

Habpocok ngokasaresibcTtBa. Bocmosnb3yemcs 06o0mmennem Beitsn Teopembr
Croyna-con Heiimana 0 €IMHCTBEHHOCTH C TOYHOCTHIO JO YHUTAPHON KBU-
BaJICHTHOCTU HEIPUBOIUMBIX MPEICTABICHUA KOMMYTAIMOHHBIX COOTHOIIEHUI.
(A.Beiiib. O6 onnoit rpyune yaurapabix oneparopos). Cornacuo Beiino, cyrie-
CTBYET eJUHCTBEHHOE C TOYHOCTHIO 10 YHUTAPHON SKBUBAJIEHTHOCTH HEIIPEPHIB-
HOE HEIPUBOJMMOE TIPEJICTABIEHHE KOMMYTAIIMOHHBIX COOTHOIIEHWIA HAJT IPYII-
10it Px P. P BK/Ia/bIBaeTCsl B KOMIAKTHYIO IPYIILY P KAaK JUCKPeTHAs HOAIPYII-
na. OrpaHuanM IpeICTaBIeHne KOMMY TAIMOHHBIX COOTHOIIEHUH Ha ITOArPYIITyY
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{(0,2),2 € P} u BoCIO/IB3yeMCs TEOPEMOH O TIPOOJIZKEHIN XAPAKTEPA TPYII-
ust P C P ua rpynmy P. D10 MOxkHO cuenars P/P pasmmdHbiMU CIOCODAMIL.
OTcrofa MOXKHO HOJIY4NTL yTBep:KaeHnue TeopeMbl.

ChsI3b BellleCTBEHHON U p-a[udecKoil Teopuil JaeT ciemyiomas Teopema.

Teopema 2 Ilycmv H - cenapabesvroe urvbepmoso npocmparcmso. i aro-
6020 nenpusodumozo npedcmasaenus (H, W) Kommymayuornux coomuowenul
nad V.= P X P u das 4106020 npocmozo p, GKAI0ONAA P = 00, CYULECTEY-
em rapaxmep Xp, Xp € V epynnu V. maxoti, wmo npedcmasaenue (H,W), 2de
W (z) = xp(x)W(z),2 € V - nenpepuicroe npedcmasienue KOMMYMAGUOHHLT
coommoweruts #ad Qp X Qp, (R = Qo).

doka3aTesbCTBO IBISETCS HECYIIECTBEHHON MOoanuKaIeil 10Ka3aTeIbCTBa
Jlxx. CllaBHOrO aHAJIOTUYHOTO YyTBEPXKJEHU [T BElleCTBeHHOro ciaydas (JLx.
Canagnbiit. O dakropHbIX pejacTaBieHnsix C*-ajredpbl KAHOHUIECKUX KOMMY-
TAIMOHHBIX COOTHOIIEHUI).

Taxum 06pa3oM, Mbl HOJLYYMIN CJIeLyIomuil pesyiabrar. OQHO U TO ¥Ke Ipe-
CTaBJICHNE KOMMYTAIIMOHHBIX COOTHOITEHWH HaJ (HPU3NIECKUM (Pa30BBIM TIPO-
CTPAHCTBOM MOXKET PACCMaTPUBATHCA KaK HEIPEPBIBHOE IIPEJICTABJIEHUE HaJ
BEIECTBEHHBIM (Pa30BbIM IIPOCTPAHCTBOM M KaK HEIPEPBHIBHOE IMIPEICTABICHNE
HaJ| p-aJuIecKuM (pa30BBIM IIPOCTPAHCTBOM. Ilepexoj; K COOTBETCTBYIOIIEMY
HEMPEPBIBHOMY TPEICTABICHUIO OCYIIECTBIIAECTCS IMIyTEM YMHOYXKEHNS Ha XapaK-
Tep rpyumsr V.
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