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1. Introduction
For describtion tachyon dynamics of open-closed p-adic string the following
non-linear pseudo-differential equations of motion
p*%qu::wp24-A2mP@‘lV2(@P+1-1), (1.1a)
p 2% = epyrr=1)/2 (1.1b)
has been suggested (Brekke, Freund, 1993; Moeller, Schnabl, 2004). Here ¥ (¢)
and ®(t) are tachyon fields for closed and open strings resp., 0 = —9? + V2 is

d-dimentional d’Alembertian, A\ = %, where h and g are closed and open strings

coupling constantas resp., p is a prime, p = 2,3,5,.... (In what follows, p is
assumed to be an integer greater then one.)
We consider one-dimetional case d =1 and A = 0.

U (1) = (P4 (1), teER, (1.2a)
P (1) TPP=D/2(1) = (p!/2% P)(t), teR, (1.2b)

The new class of non-linear Eqs (1.1) contains formaly an infinite number
of derivatives reflecting a non-local interaction in string field theory. They
involve pseudo-differential operators within the symbols p*52/ 4 and p*52/ 2. After
changing the arguments of the fields

P(t) = ¥(ty/logp), (t) = @(ty/logp),

the system of Eqgs (1.2) takes the form

WP (1) = (V4 p)(t), teR, (1.3a)
PP (PP (1) = (M2 o) (1), teER, (1.3b)

where the integral operators ¢ are defined by the formular

(e Tatzf)( / exp (t— T)Q}f(T)dT, x> 0. (1.4)
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We point out that the veriables x and ¢ in Eq.(1.4) have been interchanged
Compared with the classical heat conduction operator. The family of operators
2% ,x > 0 form a semigroup

02
207 Y07 — e(”“/)dt, x>0,y >0.

Eq.(1.3b) for ¢» = 1 defines equation of motion for open string

o = (e)(1), teR (1.5)
System of Eqgs (1.3) has the following trivial solutions (¢, ¢) (vacuums):

(0 0), (1, 1), (170) Vp; (1»_1)7(_170) p— odd;
(“1,1), (-1, —1) p=4n+1. (1.6)

For Eq.(1.3a) (closed string) in accordance with the vacuum solutions (1.6),
we set the boundary conditions

lim P(t) = Jim P(t) = 1. (1.7)
— boundary-value problems (b.-v.ps) (1.3a)-(1.7). For Eq.(1.5) (open string) -

-1, p— odd,

1.8
0, p— even (18)

lim p(t) =1, lim @) = {
t—o0 t——o0

— b.-v.p. (1.5)—(1.8). Only real non-trivial solutions are physically intresting,
and we consider only such solutions in what follows.

The posed b.-v.ps and their generalizations are of intrest not only for p-
adic string theory but also for cosmology. Many physicists and mathematicians
widely applying computer techniques made a lot of theoretical contributions to
these b.-v.ps., among them Witten, Gross, Erler, Freund, Sen, Brekke, Moeller,
Schnabl, Green, Schwarz, Frampton, Okada, Calgagni, Zwiebach, Ghoshal,
Minahan, Barnaby, Coletti, Sigalov, Biswas, Cline,... As for Russian school, the
first is [.Ja.Aref’eva and her many pupils — Koshelev, Joukovskaya, Zubarev,...,
and also Volovich, Prokhorenko, Volovich-jr., Vladimirov.

We consider the posed problems in the class of real bounded functions,
different from vacuums. The first question is existence or non-existens solutions.
If they exist, we present the following topics:

o A priori properties and estimates of solutions.

e Hermit-series expantion of solutions.

e Reducing to a b.-v.p. for the heat equation.

e Tchebyshev-series expantion of periodic solutions.

e Application the Gauss quadrature formulas to approximate the equation.

For all b.-v.ps posed the first results are (Vladimirov, Volovich-jr., 2004):

Theorem 1. If a solution belongs to the algebra of real tempered distributions

S, then it is a vacuum.



Here fdenotes the Fourier-transform of f and S’ are tempered distributions
with support in R,..

Theorem 2. If a solution is a non-negative bounded function, then it is a
vacuum.

We consider more general equation

GP(t) = (€% )(t), teR, p>2integer, x9>0 (1.9)

with corresponding boundary conditions. It is equivalent to the non-linear b.-
v.p. for the heat equation for interpolaiting function u(x,t) (Vladimirov, 2005)

ou  O%u

_— = — < .

= 2 0<z<xoteR, (1.10)
w(0,t) = @(t), u(zo,t) =¢P(t), teR (1.11)

with the same boundary conditios. By this method many results has been
obtained for b.-v.ps posed.

2. Closed string
For closed string the the Eq.(1.3a) is

WP (t) = %/_ e~ p(r)dr, teR (2.1)

with boundary conditions (1.7).

For even p there is no even continuous monotonic increasing solutions for
t > 0 (Moeller, Zwiebach, 2002; Vladimirov); nevertheless, it is possible that
piece-wise continuous solutions may exists, but the existens of such solutions do
not jet proved. For p = 3, using numerical methods on computers, I.Ya.Aref’eva
showed the existence (at least practically) even continuous solutions with two
(simple) zeros.

Eq.(2.1) is equivalent to the non-linear integral equation

WP (1) = / T Kuyalt— 1)) — o ()dr, 1R, (2.2)

where the kernel K;/4(¢) is real continuous, positive and positive-definite
function from £;(R), defined by the formula

=1 2 [ 1
Kia) =3 e [ Kialde= . (23)
— /mnp? — p? -1

e —l<yt)<l, teR.
o 1-yel,(R), 1<g<o.
o Y (+o0)=0; ¢ €Li(R).



o [ U—w)dt= [ [0 — P (8)]dt

o S )~ (D] < g, teR.

Denote by tp, <ty <tm 1 <...<tjrealzerosand o,k =1,2,...,m
their multiplicity of functlon ’(/}p (t). Here 2 <m < oo, m > maxy, oy; for even p
o > 2iseven; form =201 =09 =1, if pis odd, and 07 = 05 = 2, if p is even.

o YP(t) = 2 (t—t,)7* (1+0(|t—tk]), t — tk, and the following equalities
take place

O [ ety = ok 70
NG 0O,n=1,2,...,00 — L.

¥ € Lip,(R), a>1/p?

e Lo(R)  iff op >p?/2,k=1,2,....,m
JZo PO =9 N (0]t < 102
Sobolev’s inequality: 4 < ||1 —||||¢']|-

e Branching of zeros. Let ¥ (t) has a zero of multiplicity 2n at ¢ = 0.
Then the interpolating function w(1/4 — €,¢) = 0 has pricisely 2n simple real
roots

the) =+MvE+0(e) ase—+0, k=1,2,...,n, (2.4)

where £\, are the roots of the Hermite polynomial Hs,,.

3. Open string
The equation of motion (1.5) is

(t—1)2

w):E/_mexp[_ '

with boundary conditions (1.8).

For odd p the existence of continuous odd monotonic for ¢ > 0 solution has
been proved (Volovich-jr., 2003). The basic properties of solutions are similar
to the closed string ones. However there are some differences, in particular:

For odd p

}w(T)dT, teR (3.1)

o 1—|pl,p—sgnte Ly(R), 1<qg<o0.
o ¢(d00) =0, ¢l € L1(R).
o ¢ o€ La(R) iffop >p/2,k=1,2,....,m.

2
o (ol ol = el ol) < 3ll¢'|1>.

e Sobolev’s inequality:
8 < 11— el + Il I



For even p

o 1-—peLlya,00), 1<g<o0, a>—oc.
o ¢ e€Ly(a,0), a>—o0.

e o€ Lip,la,o0), 042%, a > —oo.

o ol € Ly(a,0) iff o > 2/p,tr > a.

4. Hermite-series expansion of solutions

Definition. Denote by £, > 0 the scale of weighted separable Hilbert
spaces, consisting of measurable functions square summable on R with respect

to the measure
dualt) = [ Zeat, [ dpalt) = 1.
m — o0

with the inner product and norm

(f,g)o = /_°° FOaO (). 1 = VT D. foge Ly

e The operator e*% maps continuously L§ into L’g for
2 o}
l<a<-—, B>———.
T 1—-2ax

e If p € £}, then it expands in a series

= Hy(t
p(t) = Zan 2n7(1')’ an = (¢, Hy),
n=0 :

which converge in £3; if furthermoore ¢ is a solution to Eq.(1.9) for zq = 1/4
then P (t) expands in the Taylor series

o tn
P — E
¥ (t) - an n| ’
n=0

which converges uniformly on every compact set in R. If the solution belongs to
1/2 .
L5'7, then the relations

(@p7Hn)1 = (QO, Vn)1/27 n’:Ovla"'

hold, where V,, are modified Hermite’s polynomials,

Vo(t)=2""%H,(—), n=0,1,....

Sl



These formulas are used as basic to approximate solutions to b.-v.ps posed
(Vladimirov,2005).
5. Tchebyshev-series expantion of periodic solutions
We start with general equation (1.9)
1 [ (t—1)?
= exp|—
Vartxy J_so 4z

which is equivalent to the b.-v.p. for the non-linear heat equation

©P(t)

}cp(r)dn teR, (5.1)

ou  9*u

—_— = < .

% o 0<x<zo,teR, (5.2)
uw(0,t) = o(t), wu(wo,t) =P(t), teR. (5.3)

Here, using this method, we constract 2m-periodic solutions to Eq.(5.1). The
real 27-periodic solutions to Eq.(5.2) is

u(z,t) = ag + Z e~ " *(ay cos kt + by, sin kt), (5.4)

where a; and by, are arbitrary real numbers satisfying for instance the condition

laol + > (lak| + be]) < oo (5.5)

k=1

From (5.4) and (5.2) it follows

o(t) = ag + Z [aka(cos t) + by sin tUg_1 (cos t)} , (1)
k=1
OP(t) = ag + Z e~k wo [aka(cos t) + b sintUy_1(cos t)} , (5.6)
k=1

where T}, and Uy are Tchebyshev’s polynomials of the first and second genus
resp.

How to determine the coefficients a; and by ? For pure even or odd solutions
we have the following

Theorem 3. In order the formulas (5.6) represents real 27- periodic
solutions ¢ to Eq.(5.1), it is necessary and sufficient, that the following equations
are fulfiled for all y,|y| < 1: for even solutions

Ze K04, Th(y [Zaka } ; (5.7)

for odd solutions, p is odd

Z e_kszUk—ly) =(1- y2)(p_1)/2 [Z kak_l(y)r' @
k=1

k=1



That is the basis fo approximate solutions to Eq.(5.1).
The method can be extanded to many-dimentional case.

6. Applications of the Gauss quadrature formulas

The simplest Gauss qudrature formula is

1 > 2 “
— e p)dt =Y Menp(ten), (6.1)
v /_ K z (b

where points of interpolation t,, are the roots of Hermite’s polynomial H,(t)
and coeflicients Ay, satisfy the relations

n 0o
S A2 = / et = T(m +1/2),m = 0,1,...,n — 1.
k=1 e

For instance, forn =3, X =2/3, Ay =1/6.t9=0,tL = ++/3/2. Applying
formula (6.1) to Eq.(5.1) for 2o = 1/4,

(1) = % / T e ot — 7,

we get approximate Eq.

PP (1) = 2/30(0) + 1/6p(t — /3/2) + 1/6(t + 1/3/2). (6.2)

The Eq.(6.2) gives satisfactory approximation to the solution, at least
qualitativelly. If we compare the asymptotic behavior at ¢ — oo for solution
©(t), p(00) =1 to Egs (5.1) and (6.2) for p = 3, so one get resp.

Ce2VIEBt — (2,096t
1—p(t) ~ Ce—\/3/210gTt _ 06—2,384t.

I.Ya.Aref’eva, in her deep astro-physical investigations, made many calculations
on computer for more general b.-v.p. (¢> = 0.9536)

o0
P = o=1-0) [ T pmin s =21 (63)
VT —oo
with n = 3,5,7,9 points of approximation, and obtained satisfactory
approximation to the solution. The method may be used for more general
equations of motion in non-flate spaces.
If we represent Eq.(6.3) in the equivalent form

;/Oooe_T[cp3(t—qT)+<p( + q7)]dr f/ o(t —7)dr, (6.4)

then we may apply to the left hand-side of Eq.(6.4) the quadrature formula with
Laguerre’s points of interpolation whereas to the right hand-side — the formula
(6.1). One may use more precise formulas with weights e~ 2, e~t'¢1/3 ..

Note, that the existence of solutions to b.-v.p. (6.3) was proved by
Prokhorenko, 2006, for 0 < g < 1; for ¢ = 0 it was proved by Volovich-jr,
2004.



