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Correspondence between Euclidean and
p-adic models

Consider O(N)-invariant N-component ¢* model.

For Euclidean space we have:
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For the p-adic space we obtain the same result
as in (1), but '(z) must be replaced by fp(z):
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Main results

e Critical exponent v in N-component Fermionic
hierarchical model may be calculated via
finding roots of some well defined finite
polynomial.

e In a case of 4-component model an explicit
expression for v was found. It is in full
agreement with the result (2).



N-component hierarchical model

Let’'s define 2N-component fermionic field:
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where w,j'(j), Y, (7), are generators of Grassmann
algebra, yeZ, k=1,...,N.

Distribution function of the field is formally
defined as
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The Gaussian part of the hamiltonian Hg(%))
is invariant under renormalization group (RG)
transformation with parameter o, and self-

interaction is given by:
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Spin-block renormalization group transformation
is defined by the equation:
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RG transformation may be represented in the
integral form:
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Let’'s denote
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and v, = wy/wg. In a space of coefficients
v1,...,vN the RG-transformation is a rational
transformation:
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RG-transformation (5) has two trivial fixed
points:

e v; =0, g =1,...,N, corresponding to
Grassmann é-function.

e Gaussian fixed point v = (no‘—l— 1)3,
7=1,...,N.



4-component model

For N = 2 RG-transformation (5) has a form
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This transformation has 4 fixed points: two
above mentioned trivial points and two non-
trivial points.
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We are interested in calculation of critical
exponent v. Let n = pd, d is a dimension of
sSpace.
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where z is the greatest eigenvalue of differential
DR of RG-transformation (7)-(8) at the non-
Gaussian fixed point.

v

det ||DR|y — zI|| =0, v = Rwv.

For 4-component Fermionic model:
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The variable a is related to critical exponent
n via the identity

For general N we show that x may be calculated
as a root of some finite polynomial.



All solutions of equation (9) are calculated
explicitly. One of them gives the following
expression for v:
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where e = a — 3/2.

T his expression was compared with the expression,
earlier obtained for p-adic 904—model using methods
of quantum field theory in terms of Feynmann
diagrams. Both results are in full correspondence
with each other.

It is interesting to discover analogous property
for v for Euclidean ¢* model.



