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Statement and motivation

Let G = 〈G,Ω〉 be a groupG with a set of operatorsΩ;
letw(x) be apolynomialoverG; that is

w(x) = g1x
n1ω1g2x

n2ω2 . . . gkx
nkωkgk,

whereni ∈ Z, ωi ∈ Ω, gi ∈ G.

Problem: under what conditions the transformation

a 7→ w(a) (a ∈ G)

is ergodic?
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Statement and motivation

Motivation: there are ciphers that use a sequence
S1, S2, . . . of permutations to encrypt a message

α1α2 . . .

(hereα’s are letters of a certain alphabet). Thus

S1(α1)S2(α2) . . .

is an encrypted message; one uses a sequence of inverse
permutationsS−11 , S

−1
2 , . . . to decrypt a message.

The cipher is provably secure whenever the sequence
S1, S2, . . . is random.
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Statement and motivation

Goal: we are seeking for an algorithm that produces
pseudorandom sequence of permutations.

The trajectory

a0 = a, a1 = w(a0), a2 = w(a1), . . . ,

wherew is an ergodic polynomial over a groupG , is a
good candidate to a pseudorandom sequence of
permutations.
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Which groups?

Which groups admit ergodic polynomial
transformations?
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Which groups?

Which groups admit ergodic polynomial
transformations?

E.g., these arepolynomially complete groups; that is,
groupsG (with no non-identical operators) such that
everymapG→ G could be represented by a polynomial.
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Which groups?

Which groups admit ergodic polynomial
transformations?

A groupG is polynomially complete if and onlyG it is a
finite simple non-Abelian group, or|G| = 2.
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Which groups?

Which groups admit ergodic polynomial
transformations?

A groupG is polynomially complete if and onlyG it is a
finite simple non-Abelian group, or|G| = 2.

To characterize ergodic polynomials on finite simple
non-Abelian groups seems to be an infeasible problem!

Noncommutative algebraic dynamics – p. 3/10



Which groups?

Which groups admit ergodic polynomial
transformations?

A groupG is polynomially complete if and onlyG it is a
finite simple non-Abelian group, or|G| = 2.

To characterize ergodic polynomials on finite simple
non-Abelian groups seems to be an infeasible problem!

If w(x) is an ergodic polynomial over a finite groupG, if
G . N , n = |G : N |, thenwn(x) is ergodic onN .
Moreover,G/N admits ergodic polynomial transform.
If N is minimal and non-Abelian, thenN is a Cartesian
product of pairwise isomorphic finite simple non-Abelian
groups. Noncommutative algebraic dynamics – p. 3/10



Which groups?

Which groups admit ergodic polynomial
transformations?

A groupG is polynomially complete if and onlyG it is a
finite simple non-Abelian group, or|G| = 2.

To characterize ergodic polynomials on finite simple
non-Abelian groups seems to be an infeasible problem!

Hence, one could hope to characterize ergodic
polynomials for a finite groupG, only ifG does not
contain simple non-Abelian sections, that is, ifG is a
solvablegroup!
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Ergodicity on Abelian groups

Theorem.An ergodic polynomial over a finite Abelian
groupG with a set of operatorsΩ exists if and only ifG
is one of the following groups:

(i) a cyclic group with an arbitrary set of operators,

(ii) the Klein groupK4, with a certain operator fromΩ
inducing an involution onG,

(iii) a direct product of a group of type(ii) by a group of
type(i) of odd order.
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Ergodicity on nilpotent groups

Theorem.An ergodic polynomial over a finite nilpotent groupG

with a set of operatorsΩ = {Id} exists if and only ifG is

isomorphic to one of the following groups:

• Cm(a), a cyclic group of orderm (generated bya);
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Ergodicity on nilpotent groups

Theorem.An ergodic polynomial over a finite nilpotent groupG

with a set of operatorsΩ = Aut(G) exists if and only ifG is

isomorphic to one of the following groups:

• Cm(a), a cyclic group of orderm (generated bya);

• Dkn = gp (u, v ‖ v
2n = 1, vu = v−1, u2 = v2

k
), where

n = 1, 2, 3, . . ., andk ∈ {n, n− 1} for n > 1 andk = 1 for n = 1

(Note:D11 = K4,D
1
2 = Q8 — quaternion group of order 8,Dn−1n —

generalized quaternion group of order2n+1,Dnn = D2n+1 — dihedral

group of order2n+1);
• H × Cm(a), whereH ∈ {Dkn} andm is odd.
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Ergodicity on nilpotent groups

Theorem.An ergodic polynomial over a finite nilpotent groupG

with a set of operatorsΩ = End(G) exists if and only ifG is

isomorphic to one of the following groups:

• Cm(a), a cyclic group of orderm (generated bya);

• Dkn = gp (u, v ‖ v
2n = 1, vu = v−1, u2 = v2

k
), where

n = 1, 2, 3, . . ., andk ∈ {n, n− 1} for n > 1 andk = 1 for n = 1

(Note:D11 = K4,D
1
2 = Q8 — quaternion group of order 8,Dn−1n —

generalized quaternion group of order2n+1,Dnn = D2n+1 — dihedral

group of order2n+1);

• SDn = gp (u, v ‖ u2 = v2
n
= 1, vu = v2

n−1−1), where

n = 3, 4, 5, . . . (a semidihedral group);
• H × Cm(a), whereH ∈ {Dkn, SDn} andm is odd.
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Ergodicity on solvable groups

M(m, k, s) = Ck(d)h Cm(c) = gp (c, d ‖ cm = dk = 1, dc =

ds), wherem, k = 2, 3, 4, . . ., s 6≡ 1 (mod k), sm = 1 (mod k),

m andk are coprime;

A(r) = K4 h C3r(b) = gp (b, u, v ‖ b3
r
= u2 = v2 = 1, uv =

vu, ub = v, vb = uv);

S(r) = A(r)h C2(a), whereba = b−1, ua = u, va = uv;

H(r) = Q8 h C3r(b) = gp (b, u, v ‖ b3
r
= u4 = v4 = 1, u2 =

v2, ub = v−1, vb = uv−1);

Q1(r) = H(r)h C2(a), whereba = b−1, ua = u, va = uv;

Q2(r) = gp (a, b, u, v ‖ b3
r
= v4 = 1, ba = b−1, ua =

u−1, va = uv, ub = vu = v−1, vb = uv−1, a2 = u2 = v2)

Noncommutative algebraic dynamics – p. 6/10



Ergodicity on solvable groups

M(m, k, s) = Ck(d)h Cm(c) = gp (c, d ‖ cm = dk = 1, dc =

ds), wherem, k = 2, 3, 4, . . ., s 6≡ 1 (mod k), sm = 1 (mod k),

m andk are coprime;

A(r) = K4 h C3r(b) = gp (b, u, v ‖ b3
r
= u2 = v2 = 1, uv =

vu, ub = v, vb = uv);

S(r) = A(r)h C2(a), whereba = b−1, ua = u, va = uv;

H(r) = Q8 h C3r(b) = gp (b, u, v ‖ b3
r
= u4 = v4 = 1, u2 =

v2, ub = v−1, vb = uv−1);

Q1(r) = H(r)h C2(a), whereba = b−1, ua = u, va = uv;

Q2(r) = gp (a, b, u, v ‖ b3
r
= v4 = 1, ba = b−1, ua =

u−1, va = uv, ub = vu = v−1, vb = uv−1, a2 = u2 = v2)

Noncommutative algebraic dynamics – p. 6/10



Ergodicity on solvable groups

M(m, k, s) = Ck(d)h Cm(c) = gp (c, d ‖ cm = dk = 1, dc =

ds), wherem, k = 2, 3, 4, . . ., s 6≡ 1 (mod k), sm = 1 (mod k),

m andk are coprime;

A(r) = K4 h C3r(b) = gp (b, u, v ‖ b3
r
= u2 = v2 = 1, uv =

vu, ub = v, vb = uv);

S(r) = A(r)h C2(a), whereba = b−1, ua = u, va = uv;

H(r) = Q8 h C3r(b) = gp (b, u, v ‖ b3
r
= u4 = v4 = 1, u2 =

v2, ub = v−1, vb = uv−1);

Q1(r) = H(r)h C2(a), whereba = b−1, ua = u, va = uv;

Q2(r) = gp (a, b, u, v ‖ b3
r
= v4 = 1, ba = b−1, ua =

u−1, va = uv, ub = vu = v−1, vb = uv−1, a2 = u2 = v2)

Noncommutative algebraic dynamics – p. 6/10



Ergodicity on solvable groups

M(m, k, s) = Ck(d)h Cm(c) = gp (c, d ‖ cm = dk = 1, dc =

ds), wherem, k = 2, 3, 4, . . ., s 6≡ 1 (mod k), sm = 1 (mod k),

m andk are coprime;

A(r) = K4 h C3r(b) = gp (b, u, v ‖ b3
r
= u2 = v2 = 1, uv =

vu, ub = v, vb = uv);

S(r) = A(r)h C2(a), whereba = b−1, ua = u, va = uv;

H(r) = Q8 h C3r(b) = gp (b, u, v ‖ b3
r
= u4 = v4 = 1, u2 =

v2, ub = v−1, vb = uv−1);

Q1(r) = H(r)h C2(a), whereba = b−1, ua = u, va = uv;

Q2(r) = gp (a, b, u, v ‖ b3
r
= v4 = 1, ba = b−1, ua =

u−1, va = uv, ub = vu = v−1, vb = uv−1, a2 = u2 = v2)

Noncommutative algebraic dynamics – p. 6/10



Ergodicity on solvable groups

M(m, k, s) = Ck(d)h Cm(c) = gp (c, d ‖ cm = dk = 1, dc =

ds), wherem, k = 2, 3, 4, . . ., s 6≡ 1 (mod k), sm = 1 (mod k),

m andk are coprime;

A(r) = K4 h C3r(b) = gp (b, u, v ‖ b3
r
= u2 = v2 = 1, uv =

vu, ub = v, vb = uv);

S(r) = A(r)h C2(a), whereba = b−1, ua = u, va = uv;

H(r) = Q8 h C3r(b) = gp (b, u, v ‖ b3
r
= u4 = v4 = 1, u2 =

v2, ub = v−1, vb = uv−1);

Q1(r) = H(r)h C2(a), whereba = b−1, ua = u, va = uv;

Q2(r) = gp (a, b, u, v ‖ b3
r
= v4 = 1, ba = b−1, ua =

u−1, va = uv, ub = vu = v−1, vb = uv−1, a2 = u2 = v2)

Noncommutative algebraic dynamics – p. 6/10



Ergodicity on solvable groups

M(m, k, s) = Ck(d)h Cm(c) = gp (c, d ‖ cm = dk = 1, dc =

ds), wherem, k = 2, 3, 4, . . ., s 6≡ 1 (mod k), sm = 1 (mod k),

m andk are coprime;

A(r) = K4 h C3r(b) = gp (b, u, v ‖ b3
r
= u2 = v2 = 1, uv =

vu, ub = v, vb = uv);

S(r) = A(r)h C2(a), whereba = b−1, ua = u, va = uv;

H(r) = Q8 h C3r(b) = gp (b, u, v ‖ b3
r
= u4 = v4 = 1, u2 =

v2, ub = v−1, vb = uv−1);

Q1(r) = H(r)h C2(a), whereba = b−1, ua = u, va = uv;

Q2(r) = gp (a, b, u, v ‖ b3
r
= v4 = 1, ba = b−1, ua =

u−1, va = uv, ub = vu = v−1, vb = uv−1, a2 = u2 = v2)
Noncommutative algebraic dynamics – p. 6/10



Ergodicity on solvable groups

Theorem.An ergodic polynomial over a finite solvable
groupG with a set of operatorsΩ = {Id} exists if and
only ifG = B h A, where orders ofA andB are
coprime, and

A ∈ {E, S(r),Q1(r),Q2(r)}

B ∈ {E,Ck,M(m, k, s)}
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Ergodicity on solvable groups

Theorem.An ergodic polynomial over a finite solvable
groupG with a set of operatorsΩ = Aut(G) exists if
and only ifG = B h A, where orders ofA andB are
coprime, and

A ∈ {E, S(r),Q1(r),Q2(r),A(r),D
k
n}

B ∈ {E,Ck,M(m, k, s)}

Note: In this case actionA onB is specified; not every
action is admitted.
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Ergodicity on solvable groups

Theorem.An ergodic polynomial over a finite solvable
groupG with a set of operatorsΩ = End(G) exists if
and only ifG = B h A, where orders ofA andB are
coprime, and

A ∈ {E, S(r),Q1(r),Q2(r),A(r),D
k
n, SDm}

B ∈ {E,Ck,M(m, k, s)}
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Ergodicity on pro-2-group D∞

D∞ ∙ ∙ ∙
ϕn+1−→ D2n

ϕn−→ D2n−1
ϕn−1−→ . . .

ϕ4−→ D8

Kerϕn = Z(D2n) = {1, v
2n−2}

D2n = (Z/2
n−1Z)+ h (Z/2Z)+

D∞ = Z
+
2 h (Z/2Z)

+

Theorem.A polynomial over the groupD∞ with the set
of operatorsAut(D∞) is ergodic(with respect to the
Haar measure)if and only if it is ergodic onD8.
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Some applications

In computer programs, realization of a certain operations
depend on the value of the one-bit registers, called
“flags."

For instance, if the value of a flag is equal to 0, then
addition is carried out, and if it is 1, then subtraction is
carried out.
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Some applications

This way, the∗ operation of the dihedral group appears
in computer calculations:

If ε, ξ are values of flags,a, b aren-bit words in the
alphabet{0, 1}, then(ε, a) ∗ (ξ, b) = (ε⊕ ξ, b+ (−1)ξa),
where⊕ is addition modulo 2.
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Some applications

Automorphisms are special word substitutions; these
could be implemented as subroutines or via look-up
tables.
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Some applications

This way, a polynomial over a dihedral groupD2n with
the set of operatorsAut(D2n) could be implemented as a
computer program that produces a pseudorandom
sequence of group elements.

This sequence could be treated as a sequence of
permutations, or as a sequence of(n+ 1)-bit words.
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Some applications

The results presented in the talk expand the set of
instructions that could be used to develop computer
programs that produce uniformly distributed sequences.

Earlier results on ergodic transformations ofZ2 could be
applied to develop programs based on arithmetic and/or
bitwise logical instructions only; results presented now
add operations with flags to the list of possible
instructions.
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Remarks on machinery

In study of ergodic transformations ofZp we used the
4p4-adic differential calculus; for instance:

A polynomialf(x) ∈ Zp[x] preserves the Haar measure
if and only if
• f is bijective modulop (i.e., onZp/pZp), and
• f ′ vanishes modulop nowhere onZp.

Givenf(x) ∈ Zp[x], for all h ∈ Zp,

f(x+ h) ≡ f(x) + hf ′(x) (mod pord ph+1)

Givenw(x) ∈ G[x] (a polynomial over a groupG), for
all h ∈ A,

w(xh) = w(x)hw
′(x),

wherew′(x) ∈ End(A), theFox derivativeof w(x).
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Remarks on machinery

Givenf(x) ∈ Zp[x], for all h ∈ Zp,

f(x+ h) ≡ f(x) + hf ′(x) (mod pord ph+1)

If A is a minimal normal subgroup of a finite groupG,
and ifA is Abelian, thenA is the additive group of a
vector space overZ/pZ.

Givenw(x) ∈ G[x] (a polynomial over a groupG), for
all h ∈ A,

w(xh) = w(x)hw
′(x),

wherew′(x) ∈ End(A), theFox derivativeof w(x).
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Remarks on machinery

Givenf(x) ∈ Zp[x], for all h ∈ Zp,

f(x+ h) ≡ f(x) + hf ′(x) (mod pord ph+1)

Givenw(x) ∈ G[x] (a polynomial over a groupG), for
all h ∈ A,

w(xh) = w(x)hw
′(x),

wherew′(x) ∈ End(A), theFox derivativeof w(x).
∂x
∂x
= 1;

∂g
∂x
= 0 for anyg ∈ G;

∂uv
∂x
= ∂u
∂x
v + ∂v

∂x
for anyu, v ∈ G[x].
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Remarks on machinery

Givenf(x) ∈ Zp[x], for all h ∈ Zp,

f(x+ h) ≡ f(x) + hf ′(x) (mod pord ph+1)

Givenw(x) ∈ G[x] (a polynomial over a groupG), for
all h ∈ A,

w(xh) = w(x)hw
′(x),

wherew′(x) ∈ End(A), theFox derivativeof w(x).

Example: Letw(x) = ax2bx−1c, then

w(xh) = w(x)hxbx
−1c+bx−1c−x−1c
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Remarks on machinery

Givenf(x) ∈ Zp[x], for all h ∈ Zp,

f(x+ h) ≡ f(x) + hf ′(x) (mod pord ph+1)

Givenw(x) ∈ G[x] (a polynomial over a groupG), for
all h ∈ A,

w(xh) = w(x)hw
′(x),

wherew′(x) ∈ End(A), theFox derivativeof w(x).
Theorem: A polynomialw(x) ∈ G[x] is bijective onG if
and only if
• w is bijective moduloA (i.e., onG/A), and
• w′ is a non-singular linear transformation ofA.
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Remarks on machinery

Givenf(x) ∈ Zp[x], for all h ∈ Zp,

f(x+ h) ≡ f(x) + hf ′(x) (mod pord ph+1)

Givenw(x) ∈ G[x] (a polynomial over a groupG), for
all h ∈ A,

w(xh) = w(x)hw
′(x),

wherew′(x) ∈ End(A), theFox derivativeof w(x).
‘Template theorem’: LetG = G0 BG1 BG2 B ∙ ∙ ∙E, let all
Gi/Gi+1 = Ai be Abelian groups. A polynomialw(x) ∈ G[x]
‘preserves measure’ onG wheneverw(x) is bijective onA1, and
w′(x) ∈ AutAi for all x, i = 2, 3, 4, . . ..
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